Volume 42 Issue 5
Oct.  2022
Turn off MathJax
Article Contents
WANG Zhihan, RUAN Yao, ZHANG Qingye, ZHANG Hongyu. Metabolic Network Flux Balance Analysis of the Microgravity Influence on the Growth of Arabidopsis Thaliana (in Chinese). Chinese Journal of Space Science, 2022, 42(5): 941-951 doi: 10.11728/cjss2022.05.210714077
Citation: WANG Zhihan, RUAN Yao, ZHANG Qingye, ZHANG Hongyu. Metabolic Network Flux Balance Analysis of the Microgravity Influence on the Growth of Arabidopsis Thaliana (in Chinese). Chinese Journal of Space Science, 2022, 42(5): 941-951 doi: 10.11728/cjss2022.05.210714077

Metabolic Network Flux Balance Analysis of the Microgravity Influence on the Growth of Arabidopsis Thaliana

doi: 10.11728/cjss2022.05.210714077 cstr: 32142.14.cjss2022.05.210714077
  • Received Date: 2021-07-14
  • Accepted Date: 2022-04-12
  • Rev Recd Date: 2022-05-25
  • Available Online: 2022-09-17
  • As a typical space environmental factor, the influence mechanism of microgravity on plants is a research hotspot in space life science. The microgravity environment directly or indirectly affects plant metabolism and induces many physiological adaptations. With the development of systems biology, the metabolic network model enables the modeling of plant metabolism in microgravity. In this study, the flux balance analysis method was used to study the metabolic networks of different tissues of the model plant Arabidopsis thaliana, and to explore the mechanism of the effect of microgravity on the growth and development of Arabidopsis thaliana. By comparing the biomass yield of Arabidopsis thaliana under space and ground conditions, it was found that the biomass of etiolated seedlings, seedlings, shoots, roots, and hypocotyls is decreased by 33.00%, 51.52%, 6.89%, 12.53%, and 11.70%, respectively, consistent with the growth trend of Arabidopsis thaliana in the space environment. Enrichment analysis of metabolic pathways showed that microgravity down-regulated Arabidopsis thaliana’s carbon fixation pathway, while up-regulated the pentose phosphate pathway. This result preliminarily analyzed the mechanism of microgravity influence on the growth and development of Arabidopsis thaliana and demonstrated the potential of the flux balance analysis method in the study of the biological effects of microgravity.

     

  • loading
  • [1]
    FU Y M, LI L Y, XIE B Z, et al. How to establish a bioregenerative life support system for long-term crewed missions to the moon or mars[J]. Astrobiology, 2016, 16(12): 925-936 doi: 10.1089/ast.2016.1477
    [2]
    DE PASCALE S, ARENA C, ARONNE G, et al. Biology and crop production in Space environments: challenges and opportunities[J]. Life Sciences in Space Research, 2021, 29: 30-37 doi: 10.1016/j.lssr.2021.02.005
    [3]
    SATHASIVAM M, HOSAMANI R, SWAMY B K, et al. Plant responses to real and simulated microgravity[J]. Life Sciences in Space Research, 2021, 28: 74-86 doi: 10.1016/j.lssr.2020.10.001
    [4]
    SOLEIMANI M, GHANATI F, HAJEBRAHIMI Z, et al. Energy saving and improvement of metabolism of cultured tobacco cells upon exposure to 2-D clinorotation[J]. Journal of Plant Physiology, 2019, 234-235: 36-43 doi: 10.1016/j.jplph.2019.01.002
    [5]
    ZHENG H Q, HAN F, LE J. Higher plants in space: microgravity perception, response, and adaptation[J]. Microgravity Science and Technology, 2015, 27(6): 377-386 doi: 10.1007/s12217-015-9428-y
    [6]
    ZHANG Y, WANG L H, XIE J Y, et al. Differential protein expression profiling of Arabidopsis thaliana callus under microgravity on board the Chinese SZ-8 spacecraft[J]. Planta, 2015, 241(2): 475-488 doi: 10.1007/s00425-014-2196-x
    [7]
    STRAUCH S M, GRIMM D, CORYDON T J, et al. Current knowledge about the impact of microgravity on the proteome[J]. Expert Review of Proteomics, 2019, 16(1): 5-16 doi: 10.1080/14789450.2019.1550362
    [8]
    HEIRENDT L, ARRECKX S, PFAU T, et al. Creation and analysis of biochemical constraint-based models using the COBRA Toolbox v. 3.0[J]. Nature Protocols, 2019, 14(3): 639-702 doi: 10.1038/s41596-018-0098-2
    [9]
    CHO J S, GU C D, HAN T H, et al. Reconstruction of context-specific genome-scale metabolic models using multiomics data to study metabolic rewiring[J]. Current Opinion in Systems Biology, 2019, 15: 1-11 doi: 10.1016/j.coisb.2019.02.009
    [10]
    PAUL A L, ZUPANSKA A K, OSTROW D T, et al. Spaceflight transcriptomes: unique responses to a novel environment[J]. Astrobiology, 2012, 12(1): 40-56 doi: 10.1089/ast.2011.0696
    [11]
    PAUL A L, ZUPANSKA A K, SCHULTZ E R, et al. Organ-specific remodeling of the Arabidopsis transcriptome in response to spaceflight[J]. BMC Plant Biology, 2013, 13: 112 doi: 10.1186/1471-2229-13-112
    [12]
    IRIZARRY R A, HOBBS B, COLLIN F, et al. Exploration, normalization, and summaries of high density oligonucleotide array probe level data[J]. Biostatistics, 2003, 4(2): 249-264 doi: 10.1093/biostatistics/4.2.249
    [13]
    DE OLIVEIRA DAL'MOLIN C G, QUEK L E, PALFREYMAN R W, et al. AraGEM, a genome-scale reconstruction of the primary metabolic network in Arabidopsis[J]. Plant Physiology, 2010, 152(2): 579-589 doi: 10.1104/pp.109.148817
    [14]
    SIRIWACH R, MATSUDA F, YANO K, et al. Drought stress responses in context-specific genome-scale metabolic models of Arabidopsis thaliana[J]. Metabolites, 2020, 10(4): 159 doi: 10.3390/metabo10040159
    [15]
    EBRAHIM A, LERMAN J A, PALSSON B O, et al. COBRApy: constraints-based reconstruction and analysis for python[J]. BMC Systems Biology, 2013, 7(1): 74 doi: 10.1186/1752-0509-7-74
    [16]
    BORDEL S. Constraint based modeling of metabolism allows finding metabolic cancer hallmarks and identifying personalized therapeutic windows[J]. Oncotarget, 2018, 9(28): 19716-19729 doi: 10.18632/oncotarget.24805
    [17]
    RAŠKEVIČIUS V, MIKALAYEVA V, ANTANAVIČIŪTĖ I, et al. Genome scale metabolic models as tools for drug design and personalized medicine[J]. PLoS One, 2018, 13(1): e0190636 doi: 10.1371/journal.pone.0190636
    [18]
    ORTH J D, THIELE I, PALSSON B Ø. What is flux balance analysis?[J]. Nature Biotechnology, 2010, 28(3): 245-248 doi: 10.1038/nbt.1614
    [19]
    HUANG D W, SHERMAN B T, TAN Q N, et al. DAVID Bioinformatics Resources: expanded annotation database and novel algorithms to better extract biology from large gene lists[J]. Nucleic Acids Research, 2007, 35(S2): W169-W175
    [20]
    SUN T H, ZHOU F, HUANG X Q, et al. ORANGE represses chloroplast biogenesis in etiolated Arabidopsis cotyledons via interaction with TCP14[J]. The Plant Cell, 2019, 31(12): 2996-3014 doi: 10.1105/tpc.18.00290
    [21]
    VANDENBRINK J P, HERRANZ R, POEHLMAN W L, et al. RNA‐seq analyses of Arabidopsis thaliana seedlings after exposure to blue‐light phototropic stimuli in microgravity[J]. American Journal of Botany, 2019, 106(11): 1466-1476 doi: 10.1002/ajb2.1384
    [22]
    PAUL A L, AMALFITANO C E, FERL R J. Plant growth strategies are remodeled by spaceflight[J]. BMC Plant Biology, 2012, 12(1): 232 doi: 10.1186/1471-2229-12-232
    [23]
    AKRAM M. Citric acid cycle and role of its intermediates in metabolism[J]. Cell Biochemistry and Biophysics, 2014, 68(3): 475-478 doi: 10.1007/s12013-013-9750-1
    [24]
    MUÑOZ-BERTOMEU J, CASCALES-MIÑANA B, ALAIZ M, et al. A critical role of plastidial glycolytic Glyceraldehyde-3-phosphate dehydrogenase in the control of plant metabolism and development[J]. Plant Signaling & Behavior, 2010, 5(1): 67-69
    [25]
    MELESHKO G I, ANTON’YAN A A, SYCHEV V N, et al. The effect of space flight factors on the pigment systems of one-celled algae[J]. USSR Space Life Sci Digest, 1991, 31: 43-45
    [26]
    ABILOV Z K, ALEKPEROV U K, MASHINSKIY A L, et al. The morphological and functional state of the photosynthetic system of plant cells grown for varying periods under space flight condition[J]. USSR Space Life Sci Digest, 1986, 8: 15-18
    [27]
    KORDYUM E, ADAMCHUK N. Clinorotation affects the state of photosynthetic membranes in Arabidopsis thaliana (L.) Heynh[J]. Journal of Gravitational Physiology: A Journal of the International Society for Gravitational Physiology, 1997, 4(2): P77-P78
    [28]
    TRIPATHY B C, BROWN C S, LEVINE H G, et al. Growth and photosynthetic responses of wheat plants grown in space[J]. Plant Physiology, 1996, 110(3): 801-806 doi: 10.1104/pp.110.3.801
    [29]
    JIAO S X, HILAIRE E, PAULSEN A Q, et al. Brassica rapa plants adapted to microgravity with reduced photosystem I and its photochemical activity[J]. Physiologia Plantarum, 2004, 122(2): 281-290 doi: 10.1111/j.1399-3054.2004.00400.x
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)  / Tables(10)

    Article Metrics

    Article Views(548) PDF Downloads(31) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return