Volume 42 Issue 5
Oct.  2022
Turn off MathJax
Article Contents
ZHANG Jiawen, ZHENG Jianhua, LI Mingtao. Target Pre-screening Method for Asteroid Exploration Based on Minimum Orbital Intersection Distance (in Chinese). Chinese Journal of Space Science, 2022, 42(5): 973-983 doi: 10.11728/cjss2022.05.210906097
Citation: ZHANG Jiawen, ZHENG Jianhua, LI Mingtao. Target Pre-screening Method for Asteroid Exploration Based on Minimum Orbital Intersection Distance (in Chinese). Chinese Journal of Space Science, 2022, 42(5): 973-983 doi: 10.11728/cjss2022.05.210906097

Target Pre-screening Method for Asteroid Exploration Based on Minimum Orbital Intersection Distance

doi: 10.11728/cjss2022.05.210906097 cstr: 32142.14.cjss2022.05.210906097
  • Received Date: 2021-09-06
  • Accepted Date: 2022-03-31
  • Rev Recd Date: 2022-04-25
  • Available Online: 2022-09-29
  • Asteroid exploration helps to study important scientific issues such as the evolution of the solar system, and the implementation of asteroid exploration during the transfer of deep space missions can increase scientific returns. Aiming at the problem of large calculation amount and low efficiency in the primary selection of asteroid exploration targets directly through orbit recursion, a target pre-screening method based on the minimum orbital intersection distance is proposed. After the formula for calculating minimum orbital intersection distance for hyperbolic orbit is derived, the theory is applied to the screening of asteroid exploration targets. Firstly, based on the shape and spatial position of the orbits of the probe and the asteroids, the geometric closest distances between their orbits are calculated, and the asteroid targets that may meet the approach distance criteria are pre-screened. Then, based on the orbit recursive model, the target asteroids whose real closest distance to the probe is less than approach distance criteria are selected. The simulation results show that this pre-screening method based on the minimum orbital intersection distance can effectively reduce the amount of calculation and reduce the calculation time, thus improving the efficiency of asteroid target determination.

     

  • loading
  • [1]
    HUANG J C, JI J H, YE P J, et al. The ginger-shaped asteroid 4179 Toutatis: new observations from a successful flyby of Chang’E-2[J]. Scientific Reports, 2013, 3: 3411 doi: 10.1038/srep03411
    [2]
    DAMARIO L A, BYRNES D V. Interplanetary trajectory design for the Galileo mission[C]//Proceedings of the 21 st Aerospace Sciences Meeting. Reno: AIAA, 1983: 1-9. DOI: 10.2514/6.1983-99
    [3]
    乔栋, 黄江川, 崔平远, 等. 嫦娥二号卫星飞越探测小行星的目标选择[J]. 中国科学: 技术科学, 2013, 43(6): 602-608 doi: 10.1360/092013-313

    QIAO Dong, HUANG Jiangchuan, CUI Pingyuan, et al. Target selection of Chang’E-2 for asteroid exploration[J]. Scientia Sinica Technologica, 2013, 43(6): 602-608 doi: 10.1360/092013-313
    [4]
    陈杨, 宝音贺西, 李俊峰. 木星探测轨道分析与设计[J]. 天文学报, 2012, 53(2): 106-118 doi: 10.3969/j.issn.0001-5245.2012.02.002

    CHEN Yang, BAOYIN Hexi, LI Junfeng. Jupiter exploration mission analysis and trajectory design[J]. Acta Astronomica Sinica, 2012, 53(2): 106-118 doi: 10.3969/j.issn.0001-5245.2012.02.002
    [5]
    刘磊, 刘勇, 曹建峰, 等. “嫦娥二号”探测小行星任务转移轨道设计[J]. 宇航学报, 2014, 35(3): 262-268 doi: 10.3873/j.issn.1000-1328.2014.03.003

    LIU Lei, LIU Yong, CAO Jianfeng, et al. Mission design of the Chang’E-2 asteroid exploration[J]. Journal of Astronautics, 2014, 35(3): 262-268 doi: 10.3873/j.issn.1000-1328.2014.03.003
    [6]
    HEDO J M, RUÍZ M, PELÁEZ J. On the minimum orbital intersection distance computation: a new effective method[J]. Monthly Notices of the Royal Astronomical Society, 2018, 479(3): 3288-3299 doi: 10.1093/mnras/sty1598
    [7]
    张佳文. 太阳系边际探测任务轨道优化设计[D]. 北京: 中国科学院大学(中国科学院国家空间科学中心), 2020: 63-85

    ZHANG Jiawen. Trajectory Design and Optimization for the Solar System Boundary Exploration Mission[D]. Beijing: National Space Science Center, the Chinese Academy of Sciences, 2020: 63-85
    [8]
    WLODARCZYK I. The potentially dangerous asteroid (99942) Apophis[J]. Monthly Notices of the Royal Astronomical Society, 2013, 434(4): 3055-3060 doi: 10.1093/mnras/stt1227
    [9]
    CASANOVA D, TARDIOLI C, LEMAÎTRE A. Space debris collision avoidance using a three-filter sequence[J]. Monthly Notices of the Royal Astronomical Society, 2014, 442(4): 3235-3242 doi: 10.1093/mnras/stu1065
    [10]
    DYBCZYŃSKI P A, JOPEK T J, SERAFIN R A. On the minimum distance between two Keplerian orbits with a common focus[J]. Celestial Mechanics, 1986, 38(4): 345-356 doi: 10.1007/BF01238925
    [11]
    KHOLSHEVNIKOV K V, VASSILIEV N N. On the distance function between two Keplerian elliptic orbits[J]. Celestial Mechanics and Dynamical Astronomy, 1999, 75(2): 75-83 doi: 10.1023/A:1008312521428
    [12]
    GRONCHI G F. An algebraic method to compute the critical points of the distance function between two Keplerian orbits[J]. Celestial Mechanics and Dynamical Astronomy, 2005, 93(1): 295-325 doi: 10.1007/s10569-005-1623-5
    [13]
    MILISAVLJEVIĆ S. The proximities of asteroids and critical points of the distance function[J]. Serbian Astronomical Journal, 2010, 180: 91-102 doi: 10.2298/SAJ1080091M
    [14]
    WISNIOWSKI T, RICKMAN H. Fast geometric method for calculating accurate minimum orbit intersection distances (MOIDs)[J]. Acta Astronomica, 2013, 63(2): 293-307
    [15]
    DEREVYANKA A E. A method for the fast MOID computation for two confocal heliocentric orbits[J]. J. Samara State Tech. Univ. Ser. Phys Math. Sci., 2014, 4(37): 144-156 doi: 10.14498/vsgtu1344
    [16]
    HEDO J M, FANTINO E, RUÍZ M, et al. Minimum orbital intersection distance: an asymptotic approach[J]. Astronomy & Astrophysics, 2020, 633: A22 doi: 10.1051/0004-6361/201936502
    [17]
    BALUEV R V. Fast error-safe MOID computation involving hyperbolic orbits[J]. Astronomy and Computing, 2021, 34: 100440 doi: 10.1016/j.ascom.2020.100440
    [18]
    WEISSTEIN E W. Halley’s Method[EB/OL]. MathWorld – A Wolfram Web Resource. (2021-03-18)[2021-03-25]. http://mathworld.wolfram.com/HalleysMethod.html.
    [19]
    RICKMAN H, WISNIOWSKI T. Application for Computation of MOIDs[EB/OL]. Space Research Center Polish Academy of Science. [2020-03-10]. http://moid.cbk.waw.pl/orbity/default/index
    [20]
    吴伟仁, 于登云, 黄江川, 等. 太阳系边际探测研究[J]. 中国科学: 信息科学, 2019, 49(1): 1-16 doi: 10.1360/N112018-00273

    WU Weiren, YU Dengyun, HUANG Jiangchuan, et al. Exploring the solar system boundary[J]. Scientia Sinica Informationis, 2019, 49(1): 1-16 doi: 10.1360/N112018-00273
    [21]
    The International Astronomical Union. Lists and Plots: Minor Planets[EB/OL]. IAU Minor Planet Center. [2020-03-12]. https://minorplanetcenter.net/iau/lists/MPLists.html.
    [22]
    刘林, 胡松杰, 王歆. 航天动力学引论[M]. 南京: 南京大学出版社, 2006: 21-52

    LIU Lin, HU Songjie, WANG Xin. An Introduction of Astrodynamics[M]. Nanjing: Nanjing University Press, 2006: 21-52
    [23]
    季江徽, 刘林. 近地小行星与地球的交会问题[J]. 中国科学(A辑), 2000, 30(4): 379-384 doi: 10.3969/j.issn.1674-7216.2000.04.013

    JI Jianghui, LIU Lin. The intersection of near earth asteroids and the earth[J]. Science in China (Series A), 2000, 30(4): 379-384 doi: 10.3969/j.issn.1674-7216.2000.04.013
    [24]
    李小玉. 深空借力飞行/小推力轨道设计与优化[D]. 北京: 中国科学院研究生院(空间科学与应用研究中心), 2010: 23-27

    LI Xiaoyu. Trajectory Design and Optimization of Gravity-assist/Low-thrust For Deep Space Exploration[D]. Beijing: National Space Science Center, CAS, 2010: 23-27
    [25]
    李俊峰, 宝音贺西, 蒋方华. 深空探测动力学与控制[M]. 北京: 清华大学出版社, 2014: 110-127

    LI Junfeng, BAOYIN Hexi, JIANG Fanghua. Dynamics and Control of Interplanetary Flight[M]. Beijing: Tsinghua University Press, 2014: 110-127
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(7)

    Article Metrics

    Article Views(514) PDF Downloads(30) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return