Volume 42 Issue 6
Dec.  2022
Turn off MathJax
Article Contents
ZHANG Xuanyi. Simulation of Solar Ultraviolet Radiation Environment in Near Space and Analysis of Topographic Difference (in Chinese). Chinese Journal of Space Science, 2022, 42(6): 1129-1136 doi: 10.11728/cjss2022.06.211208128
Citation: ZHANG Xuanyi. Simulation of Solar Ultraviolet Radiation Environment in Near Space and Analysis of Topographic Difference (in Chinese). Chinese Journal of Space Science, 2022, 42(6): 1129-1136 doi: 10.11728/cjss2022.06.211208128

Simulation of Solar Ultraviolet Radiation Environment in Near Space and Analysis of Topographic Difference

doi: 10.11728/cjss2022.06.211208128 cstr: 32142.14.cjss2022.06.211208128
  • Received Date: 2021-12-08
  • Rev Recd Date: 2022-06-13
  • Available Online: 2022-11-25
  • Solar ultraviolet radiation is one of the main sources of energy input into near space. The study of its radiation characteristics in the mid-atmosphere is an important basis for the study of atmospheric composition and density changes, photochemical reactions and dynamic processes in near space. This paper is based on the special project of HH, using MODTRAN5 radiation transfer model and satellite ozone data, the similarities and differences of the vertical distribution and seasonal evolution of ultraviolet radiation (200~400 nm) in the near space (20~50 km) over 11 major terrain areas in China were compared. The function between ozone content and radiation transmittance is calculated, and the influence of solar zenithal Angle and sun-earth distance on radiation intensity is analyzed. The results show that the vertical distribution profiles of radiative flux in each terrain area are consistent with the vertical distribution profiles of the annual difference, and the radiation characteristics and seasonal evolution in geographically adjacent regions are similar, but there are great differences between different bands of solar UV. The results provide data support for near-space exploration experiments, and provide reference for atmospheric inversion and other related fields.

     

  • loading
  • [1]
    杨秉, 杨健, 李小将, 等. 临近空间飞艇运行环境及其影响[J]. 航天器环境工程, 2008, 25(6): 555-557 doi: 10.3969/j.issn.1673-1379.2008.06.013

    YANG Bing, YANG Jian, LI Xiaojiang, et al. The operating environment of near-space and its effects on the airship[J]. Spacecraft Environment Engineering, 2008, 25(6): 555-557 doi: 10.3969/j.issn.1673-1379.2008.06.013
    [2]
    陈凤贵, 陈光明, 刘克华. 临近空间环境及其影响分析[J]. 装备环境工程, 2013, 10(4): 71-75, 85

    CHEN Fenggui, CHEN Guangming, LIU Kehua. Analysis of near space environment and its effect[J]. Equipment Environmental Engineering, 2013, 10(4): 71-75, 85
    [3]
    GAO X Z, HOU Z X, GUO Z, et al. Energy management strategy for solar-powered high-altitude long-endurance aircraft[J]. Energy Conversion and Management, 2013, 70: 20-30 doi: 10.1016/j.enconman.2013.01.007
    [4]
    李利良, 郭伟民, 何家芳. 国外近空间飞艇的现状和发展[J]. 兵工自动化, 2008, 27(2): 32-34, 48 doi: 10.3969/j.issn.1006-1576.2008.02.014

    LI Liliang, GUO Weimin, HE Jiafang. Current situation and development of foreign near space airship[J]. Ordnance Industry Automation, 2008, 27(2): 32-34, 48 doi: 10.3969/j.issn.1006-1576.2008.02.014
    [5]
    WANG Z C, HUANG M, QIAN L L, et al. Near-earth space optical observation payload cabin design[J]. Optik, 2019, 185: 138-145 doi: 10.1016/j.ijleo.2019.03.072
    [6]
    梅笑冬, 孙即霖, 李正强, 等. 中国区临近空间太阳辐射环境研究[J]. 光谱学与光谱分析, 2016, 36(3): 609-617

    MEI Xiaodong, SUN Jilin, LI Zhengqiang, et al. Radiation environment study of near space in China area[J]. Spectroscopy and Spectral Analysis, 2016, 36(3): 609-617
    [7]
    BERK A, CONFORTI P, KENNETT R, et al. MODTRAN6: a major upgrade of the MODTRAN radiative transfer code[C]//Proceedings of SPIE, Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XX. Baltimore: SPIE, 2014: 90880 H
    [8]
    BERK A, CONFORTI P, HAWES F. An accelerated line-by-line option for MODTRAN combining on-the-fly generation of line center absorption within 0.1 cm-1 bins and pre-computed line tails[C]//Proceedings of SPIE, Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XXI. Baltimore: SPIE, 2015: 947217
    [9]
    CHANCE K, KURUCZ R L. An improved high-resolution solar reference spectrum for Earth’s atmosphere measurements in the ultraviolet, visible, and near infrared[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2010, 111(9): 1289-1295 doi: 10.1016/j.jqsrt.2010.01.036
    [10]
    ANDREWS D G. An Introduction to Atmospheric Physics[M]. Cambridge: Cambridge University Press, 2010
    [11]
    杨东军, 方伟, 邱红, 等. 太阳辐射的在轨监测和定标[J]. 发光学报, 2010, 31(5): 676-681

    YANG Dongjun, FANG Wei, QIU Hong, et al. On-orbit data calibration of FY-3A solar irradiance monitor[J]. Chinese Journal of Luminescence, 2010, 31(5): 676-681
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(2)

    Article Metrics

    Article Views(637) PDF Downloads(55) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return