Volume 42 Issue 6
Dec.  2022
Turn off MathJax
Article Contents
DU Wen, HUANG He, ZHOU Jun. Simulation of Vector Magnetic Field In-orbit Calibration Algorithm for Geomagnetic Survey Satellite (in Chinese). Chinese Journal of Space Science, 2022, 42(6): 1193-1203 doi: 10.11728/cjss2022.06.211224131
Citation: DU Wen, HUANG He, ZHOU Jun. Simulation of Vector Magnetic Field In-orbit Calibration Algorithm for Geomagnetic Survey Satellite (in Chinese). Chinese Journal of Space Science, 2022, 42(6): 1193-1203 doi: 10.11728/cjss2022.06.211224131

Simulation of Vector Magnetic Field In-orbit Calibration Algorithm for Geomagnetic Survey Satellite

doi: 10.11728/cjss2022.06.211224131 cstr: 32142.14.cjss2022.06.211224131
  • Received Date: 2021-12-23
  • Accepted Date: 2022-04-11
  • Rev Recd Date: 2022-06-09
  • Available Online: 2022-11-05
  • The precision of geomagnetic survey satellites represented by SWARM is better than 0.5 nT for detection of the Earth’s magnetic field after calibration. The satellites obtain the geomagnetic information of inertial space attitude in measurement direction through the vector fluxgate magnetometer, scalar magnetometer and high-precision star tracker installed on the extension boom. The high-precision scalar magnetometer is mainly used to calibrate the fluxgate vector magnetometer. Calibration methods of in-orbit measurement error of vector magnetometer are proposed for geomagnetic survey satellite. Considering the non-orthogonal angles, scale factors and deviations of vector magnetometer, the linear output model of magnetic field vector is established. The linear correction algorithm based on small approximation and nonlinear correction algorithm based on parameters identification update are designed respectively combined with the measurement values of scalar magnetometer. The calibration accuracy of algorithms is verified, and the robustness of the algorithms is improved by Tukey weight function. Simulation results show that the correction results are similar, the triaxial errors of magnetic field can be corrected to less than 0.5 nT, and the algorithms still have a good correction effect when there is an outlier in scalar measurements.

     

  • loading
  • [1]
    左文辑, 宋福香. 微小卫星磁测自主导航方法[J]. 宇航学报, 2000, 21(2): 100-104

    ZUO Wenji, SONG Fuxiang. An approach to autonomous navigation using magnetic measurements for small satellites[J]. Journal of Astronautics, 2000, 21(2): 100-104
    [2]
    王淑一, 杨旭, 杨涤, 等. 近地卫星磁测自主导航算法研究[J]. 宇航学报, 2003, 24(6): 634-637,660

    WANG Shuyi, YANG Xu, YANG Di, et al. Algorithm for autonomous navigation of low earth orbit satellite using magnetic measurements[J]. Journal of Astronautics, 2003, 24(6): 634-637,660
    [3]
    ZHOU B, YANG Y Y, ZHANG Y T, et al. Magnetic field data processing methods of the China seismo-electromagnetic satellite[J]. Earth and Planetary Physics, 2018, 2(6): 455-461 doi: 10.26464/epp2018043
    [4]
    刘逸康, 任顺清, 张高雄, 等. 星敏与磁力仪间安装矩阵的一种地面标定方法[J]. 哈尔滨工业大学学报, 2021, 53(6): 34-40

    LIU Yikang, REN Shunqing, ZHANG Gaoxiong, et al. A calibration method for installation matrix between star sensor and magnetometer on the ground[J]. Journal of Harbin Institute of Technology, 2021, 53(6): 34-40
    [5]
    王兰炜, 胡哲, 申旭辉, 等. 电磁监测试验卫星(张衡一号)数据处理方法和流程[J]. 遥感学报, 2018, 22(S1): 39-55

    WANG Lanwei, HU Zhe, SHEN Xuhui, et al. Data processing methods and procedures of CSES satellite[J]. Journal of Remote Sensing, 2018, 22(S1): 39-55
    [6]
    于向前, 刘斯, 肖池阶, 等. 基于椭球拟合的三轴磁强计两步校准法[J]. 仪表技术与传感器, 2021(4): 52-56 doi: 10.3969/j.issn.1002-1841.2021.04.011

    YU Xiangqian, LIU Si, XIAO Chijie, et al. Two-step calibration of tri-axial magnetometer based on ellipsoid fitting[J]. Instrument Technique and Sensor, 2021(4): 52-56 doi: 10.3969/j.issn.1002-1841.2021.04.011
    [7]
    夏琳琳, 耿靖童, 肖建磊, 等. 一种正交三轴磁罗盘的椭球拟合分步优化补偿方法(英文)[J]. 中国惯性技术学报, 2018, 26(4): 478-483 doi: 10.13695/j.cnki.12-1222/o3.2018.04.010

    XIA Linlin, GENG Jingtong, XIAO Jianlei, et al. Ellipsoid fitting based two-step optimized correction for orthogonal tri-axis magnetic compass measurements[J]. Journal of Chinese Inertial Technology, 2018, 26(4): 478-483 doi: 10.13695/j.cnki.12-1222/o3.2018.04.010
    [8]
    OLSEN N, ALBINI G, BOUFFARD J, et al. Magnetic observations from CryoSat-2: calibration and processing of satellite platform magnetometer data[J]. Earth, Planets and Space, 2020, 72(1): 48 doi: 10.1186/s40623-020-01171-9
    [9]
    HAMMER M D, FINLAY C C, OLSEN N. Applications for CryoSat-2 satellite magnetic data in studies of Earth's core field variations[J]. Earth, Planets and Space, 2021, 73(1): 73 doi: 10.1186/s40623-021-01365-9
    [10]
    ALKEN P, OLSEN N, FINLAY C C. Co-estimation of geomagnetic field and in-orbit fluxgate magnetometer calibration parameters[J]. Earth, Planets and Space, 2020, 72(1): 49 doi: 10.1186/s40623-020-01163-9
    [11]
    HERCEG M, JØRGENSEN P S, JØRGENSEN J L. Characterization and compensation of thermo-elastic instability of SWARM optical bench on Micro Advanced Stellar Compass attitude observations[J]. Acta Astronautica, 2017, 137: 205-213 doi: 10.1016/j.actaastro.2017.04.018
    [12]
    KLOSS C, FINLAY C C, OLSEN N. Co-estimating geomagnetic field and calibration parameters: modeling Earth’s magnetic field with platform magnetometer data[J]. Earth, Planets and Space, 2021, 73(1): 23 doi: 10.1186/s40623-020-01351-7
    [13]
    张镇琦, 李磊, 周斌, 等. 基于绝对磁场测量的磁通门磁强计在轨标定方法[J]. 空间科学学报, 2014, 34(2): 235-241 doi: 10.11728/cjss2014.02.235

    ZHANG Zhenqi, LI Lei, ZHOU Bin, et al. A method of in-orbit calibration of fluxgate magnetometer based on the measurement of absolute scalar magnetometer[J]. Chinese Journal of Space Science, 2014, 34(2): 235-241 doi: 10.11728/cjss2014.02.235
    [14]
    JØRGENSEN J L, JØRGENSEN P S, HERCEG M. Swarm μASC star tracker in-flight status and performance[EB/OL]. (2017-10-14)[2021-12-23]. https://orbit.dtu.dk/en/publications/swarm-%CE%BCasc-star-tracker-in-flight-status-and-performance
    [15]
    秦赓, 管雪元, 李文胜. 基于椭球补偿的三维载体磁场误差补偿方法[J]. 电子测量技术, 2018, 41(2): 37-40

    QIN Geng, GUAN Xueyuan, LI Wensheng. Compensation method of magnetic field error of three dimensional vector based on ellipsoid compensation[J]. Electronic Measurement Technology, 2018, 41(2): 37-40
    [16]
    YIN F, LÜHR H. Recalibration of the CHAMP satellite magnetic field measurements[J]. Measurement Science and Technology, 2011, 22(5): 055101 doi: 10.1088/0957-0233/22/5/055101
    [17]
    TøFFNER-CLAUSEN L, LESUR V, OLSEN N, et al. In-flight scalar calibration and characterisation of the Swarm magnetometry package[J]. Earth, Planets and Space, 2016, 68(1): 129 doi: 10.1186/s40623-016-0501-6
    [18]
    陈贵芳, 郁丰, 王润. 基于IGRF的地磁基准图技术[J]. 地震地磁观测与研究, 2020, 41(3): 98-104

    CHEN Guifang, YU Feng, WANG Run. Geomagnetic reference map technology based on IGRF[J]. Seismological and Geomagnetic Observation and Research, 2020, 41(3): 98-104
    [19]
    胡睿帆. 数字式氦光泵磁力仪的工程样机设计[D]. 长春: 吉林大学, 2017

    HU Ruifan. Design of Engineering Prototype for Digital Helium Optically Pumped Magnetometer[D]. Changchun: Jilin University, 2017
    [20]
    BLACK M J, RANGARAJAN A. On the unification of line processes, outlier rejection, and robust statistics with applications in early vision[J]. International Journal of Computer Vision, 1996, 19(1): 57-91 doi: 10.1007/BF00131148
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(1)

    Article Metrics

    Article Views(627) PDF Downloads(50) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return