Volume 43 Issue 1
Jan.  2023
Turn off MathJax
Article Contents
LI Fan, CAO Yang, MOU Huan, LIU Yaning, LI Haitao, LI Baoquan. Miniature Micro-focal X-ray Closed Tube and Electron Emission Difference of Cathode Wire (in Chinese). Chinese Journal of Space Science, 2023, 43(1): 137-143 doi: 10.11728/cjss2023.01.211124122
Citation: LI Fan, CAO Yang, MOU Huan, LIU Yaning, LI Haitao, LI Baoquan. Miniature Micro-focal X-ray Closed Tube and Electron Emission Difference of Cathode Wire (in Chinese). Chinese Journal of Space Science, 2023, 43(1): 137-143 doi: 10.11728/cjss2023.01.211124122

Miniature Micro-focal X-ray Closed Tube and Electron Emission Difference of Cathode Wire

doi: 10.11728/cjss2023.01.211124122 cstr: 32142.14.cjss2023.01.211124122
  • Received Date: 2021-11-24
  • Accepted Date: 2022-04-15
  • Rev Recd Date: 2022-05-06
  • Available Online: 2022-11-03
  • In-situ measurement of planetary rock composition is the basic requirement of planetary exploration, and X-ray fluorescence analysis is an important technical means to carry out elemental composition measurement. In order to meet the needs of X-ray fluorescence analyzer for deep space detection, a miniature X-ray closed tube with micro-focal spot is designed and developed. It size is Φ15 mm×22 mm, and the focal spot size is 230 μm. The anode is grounded in operation, and the cathode is connected to the floating negative high voltage with the maximum voltage of –50 kV. In this paper, the differences of electron emission of common hot cathodes such as spiral tungsten, linear tungsten and linear rhenium tungsten hot cathodes, are studied in detail, and the electron emission efficiency of each hot cathode is measured. The test results show that the maximum electron emission efficiency of linear rhenium tungsten wire is 27.87 μA·W–1 at 200 V anode voltage, which is 4 times that of spiral tungsten wire and 9 times that of linear tungsten wire. In addition, rhenium tungsten wire has the characteristics of fast electron emission, low preheating requirement and low vacuum requirement, so it is an ideal choice for X-ray closed tube cathode wire for deep space exploration.

     

  • loading
  • [1]
    TURKEVICH A. Chemical analysis of surfaces by use of large-angle scattering of heavy charged particles[J]. Science, 1961, 134(3480): 672-674 doi: 10.1126/science.134.3480.672
    [2]
    RIEDER R, WÄNKE H, ECONOMOU T, et al. Determination of the chemical composition of Martian soil and rocks: The alpha proton X ray spectrometer[J]. Journal of Geophysical Research: Planets, 1997, 102(E2): 4027-4044 doi: 10.1029/96JE03918
    [3]
    TURKEVICH A L, FRANZGROTE E J, PATTERSON J H. Chemical composition of the lunar surface in Mare Tranquillitatis[J]. Science, 1969, 165(3890): 277-279 doi: 10.1126/science.165.3890.277
    [4]
    FRANZGROTE E J, PATTERSON J H, TURKEVICH A L, et al. Chemical composition of the lunar surface in Sinus Medii[J]. Science, 1970, 167(3917): 376-379 doi: 10.1126/science.167.3917.376
    [5]
    PATTERSON J H, TURKEVICH A L, FRANZGROTE E J, et al. Chemical composition of the lunar surface in a terra region near the crater Tycho[J]. Science, 1970, 168(3933): 825-828 doi: 10.1126/science.168.3933.825
    [6]
    YODER C F, STANDISH E M. Martian precession and rotation from Viking Lander range data[J]. Journal of Geophysical Research: Planets, 1997, 102(E2): 4065-4080 doi: 10.1029/96JE03642
    [7]
    GOLOMBEK M P. The Mars Pathfinder mission[J]. Journal of Geophysical Research: Planets, 1997, 102(E2): 3953-3965 doi: 10.1029/96JE02805
    [8]
    RIEDER R, GELLERT R, BRÜCKNER J, et al. The new Athena alpha particle X-ray spectrometer for the Mars Exploration Rovers[J]. Journal of Geophysical Research: Planets, 2003, 108(E12): 8066
    [9]
    韩淋. 机遇号火星漫游器结束任务[J]. 空间科学学报, 2019, 39(3): 272

    HAN Lin. The Mars Rover Opportunity has ended its mission[J]. Chinese Journal of Space Science, 2019, 39(3): 272
    [10]
    SCHMIDT M E, CAMPBELL J L, GELLERT R, et al. Geochemical diversity in first rocks examined by the Curiosity Rover in Gale Crater: Evidence for and significance of an alkali and volatile-rich igneous source[J]. Journal of Geophysical Research: Planets, 2014, 119(1): 64-81 doi: 10.1002/2013JE004481
    [11]
    赵玉芬, 刘艳, 黄碧玲, 等. 火星生命探测中一种潜在的生物标志物磷酸盐[J]. 空间科学学报, 2021, 41(1): 129-132 doi: 10.11728/cjss2021.01.129

    ZHAO Yufen, LIU Yan, HUANG Biling, et al. A potential biomarker phosphate for life exploration on Mars Biomarker for life[J]. Chinese Journal of Space Science, 2021, 41(1): 129-132 doi: 10.11728/cjss2021.01.129
    [12]
    吴明烨. 嫦娥三号粒子激发X射线谱仪数据处理方法研究[D]. 北京: 中国科学院大学, 2012

    WU Mingye. Research on Data Processing Method of Chang’E-3 Particle Excitation X-ray Spectrometer[D]. Beijing: University of Chinese Academy of Sciences, 2012
    [13]
    李春来, 刘建军, 左维, 等. 中国月球探测进展(2011-2020年)[J]. 空间科学学报, 2021, 41(1): 68-75 doi: 10.11728/cjss2021.01.068

    LI Chunlai, LIU Jianjun, ZUO Wei, et al. Progress of China’s Lunar Exploration (2011-2020)[J]. Chinese Journal of Space Science, 2021, 41(1): 68-75 doi: 10.11728/cjss2021.01.068
    [14]
    KELLIHER W C, CARLBERG I A, ELAM W T, et al. Performance of a Borehole X-ray fluorescence spectrometer for planetary exploration[C]//2008 IEEE Aerospace Conference. Big Sky, MT, USA: IEEE, 2008: 1-5
    [15]
    MARTIN P E, EHLMANN B L, THOMAS N H, et al. Studies of a lacustrine-volcanic mars analog field site with mars-2020-like instruments[J]. Earth and Space Science, 2020, 7(2): e2019EA000720
    [16]
    HEIRWEGH C M, ELAM W T, FLANNERY D T, et al. An empirical derivation of the X-ray optic transmission profile used in calibrating the Planetary Instrument for X-ray Lithochemistry (PIXL) for Mars 2020[J]. Powder Diffraction, 2018, 33(2): 162-165 doi: 10.1017/S0885715618000416
    [17]
    UCKERT K, BHARTIA R, BEEGLE L W, et al. Calibration of the SHERLOC deep ultraviolet fluorescence-Raman spectrometer on the Perseverance rover[J]. Applied Spectroscopy, 2021, 75(7): 763-773 doi: 10.1177/00037028211013368
    [18]
    ALLWOOD A C, WADE L A, FOOTE M C, et al. PIXL: Planetary instrument for X-ray lithochemistry[J]. Space Science Reviews, 2020, 216(8): 134 doi: 10.1007/s11214-020-00767-7
    [19]
    李保权, 曹阳, 牟欢. 一种微型微焦斑X射线管的阴极光学结构: 中国, 201910813860. X[P]. 2019-12-03

    LI Baoquan, CAO Yang, MOU Huan. A cathode lens structure of miniature micro-focus X-ray tubes: CN, 201910813860. X[P]. 2019-12-03
    [20]
    JIANG D Y, XIAO W B, LIU D S, et al. Structural stability, electronic structures, mechanical properties and debye temperature of W-Re alloys: a first-principles study[J]. Fusion Engineering and Design, 2021, 162: 112081 doi: 10.1016/j.fusengdes.2020.112081
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(2)

    Article Metrics

    Article Views(516) PDF Downloads(33) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return