Citation: | ZHANG Rongyu, YAN Jingye, WU Lin, WU Ji. High Dynamic Range Solar Radio Imaging Based on Deconvolution Using Prolate Spheroidal Wave Functions (in Chinese). Chinese Journal of Space Science, 2023, 43(1): 68-77 doi: 10.11728/cjss2023.01.211125126 |
[1] |
THOMPSON A R, MORAN J M, SWENSON G W J R. Interferometry and Synthesis in Radio Astronomy[M]. 3rd ed. Cham: Springer, 2017
|
[2] |
YATAWATTA S. Radio astronomical image deconvolution using prolate spheroidal wave functions[C]//Proceedings of 2011 18 th IEEE International Conference on Image Processing. Brussels: IEEE, 2011: 2781-2784
|
[3] |
HÖGBOM J A. Aperture synthesis with a non-regular distribution of interferometer baselines[J]. Astronomy and Astrophysics Supplement, 1974, 15: 417-426
|
[4] |
COTTON W D, USON J M. Pixelization and dynamic range in radio interferometry[J]. Astronomy & Astrophysics, 2008, 490(1): 455-460
|
[5] |
YATAWATTA S. Fundamental limitations of pixel based image deconvolution in radio astronomy[C]//Proceedings of 2010 IEEE Sensor Array and Multichannel Signal Processing Workshop. Jerusalem: IEEE, 2010: 69-72
|
[6] |
LEVANDA R, LESHEM A. Synthetic aperture radio telescopes[J]. IEEE Signal Processing Magazine, 2010, 27(1): 14-29 doi: 10.1109/MSP.2009.934719
|
[7] |
REFREGIER A. Shapelets: I. A method for image analysis[J]. Monthly Notices of the Royal Astronomical Society, 2003, 338(1): 35-47 doi: 10.1046/j.1365-8711.2003.05901.x
|
[8] |
CHANG T C, REFREGIER A. Shape reconstruction and weak lensing measurement with interferometers: a shapelet approach[J]. The Astrophysical Journal, 2002, 570(1): 447-456 doi: 10.1086/339496
|
[9] |
SLEPIAN D, POLLAK H O. Prolate spheroidal wave functions, Fourier analysis and uncertainty—I[J]. The Bell System Technical Journal, 1961, 40(1): 43-63 doi: 10.1002/j.1538-7305.1961.tb03976.x
|
[10] |
LANDAU H J, POLLAK H O. Prolate spheroidal wave functions, Fourier analysis and uncertainty—II[J]. The Bell System Technical Journal, 1961, 40(1): 65-84 doi: 10.1002/j.1538-7305.1961.tb03977.x
|
[11] |
SLEPIAN D. Prolate spheroidal wave functions, Fourier analysis and uncertainty—IV: extensions to many dimensions; generalized prolate spheroidal functions[J]. The Bell System Technical Journal, 1964, 43(6): 3009-3057 doi: 10.1002/j.1538-7305.1964.tb01037.x
|
[12] |
SIMONS F J, WANG D V. Spatiospectral concentration in the Cartesian plane[J]. GEM-International Journal on Geomathematics, 2011, 2(1): 1-36 doi: 10.1007/s13137-011-0016-z
|
[13] |
NAKAJIMA H, NISHIO M, ENOME S, et al. The Nobeyama radioheliograph[J]. Proceedings of the IEEE, 1994, 82(5): 705-713 doi: 10.1109/5.284737
|
[14] |
YATAWATTA S. Shapelets and related techniques in radio-astronomical imaging[C]//Proceedings of 2011 URSI General Assembly and Scientific Symposium. Istanbul: IEEE, 2011: 1-4
|
[15] |
NOORISHAD P, YATAWATTA S. Efficient computation of prolate spheroidal wave functions in radio astronomical source modeling[C]//Proceedings of 2011 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT). Bilbao: IEEE, 2011: 326-330
|
[16] |
LINDQUIST M A, ZHANG C H, GLOVER G, et al. A generalization of the two-dimensional prolate spheroidal wave function method for nonrectilinear MRI data acquisition methods[J]. IEEE Transactions on Image Processing, 2006, 15(9): 2792-2804 doi: 10.1109/TIP.2006.877314
|
[17] |
SLEPIAN D. On bandwidth[J]. Proceedings of the IEEE, 1976, 64(3): 292-300 doi: 10.1109/PROC.1976.10110
|
[18] |
THOMPSON A R, BRACEWELL R N. Interpolation and Fourier transformation of fringe visibilities[J]. Astronomical Journal, 1974, 79: 11-24 doi: 10.1086/111523
|
[19] |
HO C, SLOBIN S, KANTAK A, et al. Solar brightness temperature and corresponding antenna noise temperature at microwave frequencies[J]. Interplanetary Netw. Progr. Rep., 2008, 42-175: 1-11
|
[20] |
MCLEAN D J, LABRUM N R. Solar Radiophysics[M]. Cambridge: Cambridge University Press, 1985
|
[21] |
PETY J, GUETH F, GUILLOTEAU S. Impact of ACA on the wide-field imaging capabilities of ALMA[R]. ALMA Memo Series, 2001, 398
|