Citation: | WANG Hongbo, ZHANG Mingjiang, XIONG Jianning. Effects of Solar Extreme Ultraviolet Radiation on Thermospheric Neutral Density (in Chinese). Chinese Journal of Space Science, 2023, 43(1): 87-100 doi: 10.11728/cjss2023.01.211217130 |
[1] |
HARRISON R A, SAWYER E C, CARTER M K, et al. The coronal diagnostic spectrometer for the solar and heliospheric observatory[J]. Solar Physics, 1995, 162(1/2): 233-290
|
[2] |
HOVESTADT D, HILCHENBACH M, BÜRGI A, et al. CELIAS – Charge, element and isotope analysis system for SOHO[J]. Solar Physics, 1995, 162(1/2): 441-481
|
[3] |
WOODS T N, EPARVIER F G, BAILEY S M, et al. Solar EUV Experiment (SEE): mission overview and first results[J]. Journal of Geophysical Research: Space Physics, 2005, 110(A1): A01312
|
[4] |
WOODS T N, EPARVIER F G, HOCK R, et al. Extreme Ultraviolet Variability Experiment (EVE) on the Solar Dynamics Observatory (SDO): overview of science objectives, instrument design, data products, and model developments[J]. Solar Physics, 2012, 275(1/2): 115-143
|
[5] |
唐成, 李嘉巍, 张效信, 等. 第23太阳活动周热层大气密度对太阳辐射指数F10.7响应的模拟研究[J]. 空间科学学报, 2021, 41(5): 704-714 doi: 10.11728/cjss2021.05.704
TANG Cheng, LI Jiawei, ZHANG Xiaoxin, et al. TIEGCM numerical study on the thermospheric density response to solar F10.7 radio flux variations during the 23 rd solar cycle[J]. Chinese Journal of Space Science, 2021, 41(5): 704-714 doi: 10.11728/cjss2021.05.704
|
[6] |
TOBISKA W K, BOUWER S D, BOWMAN B R. The development of new solar indices for use in thermospheric density modeling[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2008, 70(5): 803-819 doi: 10.1016/j.jastp.2007.11.001
|
[7] |
汪宏波, 赵长印. 不同太阳辐射指数对大气模型精度的影响分析[J]. 中国科学G辑: 物理学 力学 天文学, 2009, 39(7): 1120-1128 doi: 10.1007/s11433-009-0133-y
WANG Hongbo, ZHAO Changyin. Effects of various solar indices on accuracy of Earth’s thermospheric neutral density models[J]. Science in China Series G: Physics, Mechanics and Astronomy, 2009, 39(7): 1120-1128 doi: 10.1007/s11433-009-0133-y
|
[8] |
BRUINSMA S, TAMAGNAN D, BIANCALE R. Atmospheric densities derived from CHAMP/STAR accelerometer observations[J]. Planetary and Space Science, 2004, 52(4): 297-312 doi: 10.1016/j.pss.2003.11.004
|
[9] |
SUTTON E K, NEREM R S, FORBES J M. Density and winds in the thermosphere deduced from accelerometer data[J]. Journal of Spacecraft and Rockets, 2007, 44(6): 1210-1219 doi: 10.2514/1.28641
|
[10] |
REIGBER C, LÜHR H, SCHWINTZER P. CHAMP mission status[J]. Advances in Space Research, 2002, 30(2): 129-134 doi: 10.1016/S0273-1177(02)00276-4
|
[11] |
TAPLEY B D, BETTADPUR S, WATKINS M, et al. The gravity recovery and climate experiment: mission overview and early results[J]. Geophysical Research Letters, 2004, 31(9): L09607
|
[12] |
汪宏波, 熊永清, 赵长印. 基于精密光压模型的GRACE卫星加速仪校标新方法[J]. 天文学报, 2016, 57(5): 544-559 doi: 10.15940/j.cnki.0001-5245.2016.05.005
WANG Hongbo, XIONG Yongqing, ZHAO Changyin. The new calibration method of accelerometer in GRACE satellites based on precise solar radiation model[J]. Acta Astronomica Sinica, 2016, 57(5): 544-559 doi: 10.15940/j.cnki.0001-5245.2016.05.005
|
[13] |
FRIIS-CHRISTENSEN E, LÜHR H, KNUDSEN D, et al. Swarm-an earth observation mission investigating geospace[J]. Advances in Space Research, 2008, 41(1): 210-216 doi: 10.1016/j.asr.2006.10.008
|
[14] |
GUO J P, WAN W X, FORBES J M, et al. Effects of solar variability on thermosphere density from CHAMP accelerometer data[J]. Journal of Geophysical Research: Space Physics, 2007, 112(A10): A10308
|
[15] |
JACCHIA L G. Thermospheric Temperature, Density, and Composition: New Models[R]. Cambridge: Smithsonian Institution Astrophysical Observatory, 1977
|
[16] |
HEDIN A E. Correlations between thermospheric density and temperature, solar EUV Flux, and 10.7-cm Flux variations[J]. Journal of Geophysical Research, 1984, 89(A11): 9828-9834 doi: 10.1029/JA089iA11p09828
|
[17] |
HEDIN A E, MAYR H G. Solar EUV induced variations in the thermosphere[J]. Journal of Geophysical Research, 1987, 92(D1): 869-875 doi: 10.1029/JD092iD01p00869
|
[18] |
LIU H, LÜHR H. Strong disturbance of the upper thermospheric density due to magnetic storms: CHAMP observations[J]. Journal of Geophysical Research: Space Physics, 2005, 110(A9): A09S29
|
[19] |
BRUINSMA S, THUILLIER G, BARLIER F. The DTM-2000 empirical thermosphere model with new data assimilation and constraints at lower boundary: accuracy and properties[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2003, 65(9): 1053-1070 doi: 10.1016/S1364-6826(03)00137-8
|
[20] |
PICONE J M, HEDIN A E, DROB D P, et al. NRLMSISE-00 empirical model of the atmosphere: statistical comparisons and scientific issues[J]. Journal of Geophysical Research: Space Physics, 2002, 107(A12): 1468
|
[21] |
REBER C A, HAYS P B. Thermospheric wind effects on the distribution of helium and argon in the Earth’s upper atmosphere[J]. Journal of Geophysical Research, 1973, 78(16): 2977-2991 doi: 10.1029/JA078i016p02977
|
[22] |
LIU X J, WANG W B, THAYER J P, et al. The winter helium bulge revisited[J]. Geophysical Research Letters, 2014, 41(19): 6603-6609 doi: 10.1002/2014GL061471
|
[23] |
KEATING G, PRIOR E. The winter helium bulge[J]. Space Research, 1968, 8: 982
|
[24] |
SUTTON E K. Interhemispheric transport of light neutral species in the thermosphere[J]. Geophysical Research Letters, 2016, 43(24): 12325-12332
|