Citation: | WANG Cunyuan, ZHENG Wei, LI Mingtao. Dim Small Object Detection Method Based on Statistical Feature Space Extraction and SVM (in Chinese). Chinese Journal of Space Science, 2023, 43(1): 119-128 doi: 10.11728/cjss2023.01.211231136 |
[1] |
XUE D N, SUN J Q, HU Y Q, et al. Dim small target detection based on convolutinal neural network in star image[J]. Multimedia Tools and Applications, 2020, 79(7): 4681-4698
|
[2] |
LI Y S, LI Z Z, ZHANG C, et al. Infrared maritime dim small target detection based on spatiotemporal cues and directional morphological filtering[J]. Infrared Physics & Technology, 2021, 115: 103657
|
[3] |
BAI X Z, ZHOU F G. Analysis of new top-hat transformation and the application for infrared dim small target detection[J]. Pattern Recognition, 2010, 43(6): 2145-2156 doi: 10.1016/j.patcog.2009.12.023
|
[4] |
MENG W, JIN T, ZHAO X W. Adaptive method of dim small object detection with heavy clutter[J]. Applied Optics, 2013, 52(10): D64-D74 doi: 10.1364/AO.52.000D64
|
[5] |
XU Y L, WANG W H. A method for single frame detection of infrared dim small target in complex background[J]. Journal of Physics: Conference Series, 2020, 1634(1): 012063 doi: 10.1088/1742-6596/1634/1/012063
|
[6] |
QI S X, MA J, TAO C, et al. A robust directional saliency-based method for infrared small-target detection under various complex backgrounds[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(3): 495-499 doi: 10.1109/LGRS.2012.2211094
|
[7] |
YANG C C, MA J Y, ZHANG M F, et al. Multiscale facet model for infrared small target detection[J]. Infrared Physics & Technology, 2014, 67: 202-209
|
[8] |
LI H, TAN Y H, LI Y S, et al. Image layering based small infrared target detection method[J]. Electronics Letters, 2014, 50(1): 42-44 doi: 10.1049/el.2013.3042
|
[9] |
CHEN C L P, LI H, WEI Y T, et al. A local contrast method for small infrared target detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(1): 574-581 doi: 10.1109/TGRS.2013.2242477
|
[10] |
GAO C Q, MENG D Y, YANG Y, et al. Infrared patch-image model for small target detection in a single image[J]. IEEE Transactions on Image Processing, 2013, 22(12): 4996-5009 doi: 10.1109/TIP.2013.2281420
|
[11] |
HAN J H, MA Y, ZHOU B, et al. A robust infrared small target detection algorithm based on human visual system[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(12): 2168-2172 doi: 10.1109/LGRS.2014.2323236
|
[12] |
HE L H, GE L. CamShift target tracking based on the combination of inter-frame difference and background difference[C]//2018 37 th Chinese Control Conference (CCC). Wuhan, China: IEEE, 2018: 889-893
|
[13] |
CHEN H, BOHUSH R P, CHEN C, et al. Estimation of people movement in video based on optical flow block method and motion maps[J]. Pattern Recognition and Image Analysis, 2021, 31(2): 261-270 doi: 10.1134/S105466182102005X
|
[14] |
ZHANG T, SONG C F. Object detection based on minimum convex hull and generalized Hough transform[J]. IOP Conference Series: Materials Science and Engineering, 2020, 768(7): 072058 doi: 10.1088/1757-899X/768/7/072058
|
[15] |
TESTOLIN A, DIAMANT R. Combining denoising autoencoders and dynamic programming for acoustic detection and tracking of underwater moving targets)[J]. Sensors, 2020, 20(10): 2945 doi: 10.3390/s20102945
|
[16] |
BOSQUET B, MUCIENTES M, BREA V M. STDnet-ST: Spatio-temporal ConvNet for small object detection[J]. Pattern Recognition, 2021, 116: 107929 doi: 10.1016/j.patcog.2021.107929
|
[17] |
DU J M, LI D Y, DENG Y J, et al. Multiple frames based infrared small target detection method using CNN[C]//2021 4 th International Conference on Algorithms, Computing and Artificial Intelligence (ACAi 2021). Sanya, China: Association for Computing Machinery, 2021: 397-402
|
[18] |
KUMAR S S, ABRAHAM D M, JAHANSHAHI M R, et al. Automated defect classification in sewer closed circuit television inspections using deep convolutional neural networks[J]. Automation in Construction, 2018, 91: 273-283 doi: 10.1016/j.autcon.2018.03.028
|
[19] |
REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: Unified, real-time object detection[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, NV, USA: IEEE, 2015: 779-788
|
[20] |
REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, HI, USA: IEEE, 2016: 6517-6525
|
[21] |
LIU W, ANGUELOV D, ERHAN D, et al. SSD: Single shot MultiBox detector[C]//14 th European Conference on Computer Vision. Amsterdam, The Netherlands: Springer, 2016: 21-37
|
[22] |
GIRSHICK R. Fast R-CNN[C]//2015 IEEE International Conference on Computer Vision. Santiago, Chile: IEEE, 2015: 1440-1448
|
[23] |
REN SQ, HE K M, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[C]//International Conference on Neural Information Processing Systems. Cambridge: MIT Press, 2015: 91-99
|
[24] |
HE K M, GEORGIA G, DOLLÁR P, et al. Mask R-CNN[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(2): 386-397 doi: 10.1109/TPAMI.2018.2844175
|
[25] |
PATAN G, BARSKY B A. An Introduction to Laplacian Spectral Distances and Kernels: Theory, Computation, and Applications[M]. San Rafael: Morgan & Claypool Publishers, 2017
|
[26] |
DESHPANDE S D, ER M H, VENKATESWARLU R, et al. Max-mean and max-median filters for detection of small targets[J]. Proceedings of the SPIE, 1999, 3809: 74-83 doi: 10.1117/12.364049
|
[27] |
XU Y, LUO M Z, LI T, et al. ECG signal De-noising and baseline wander correction based on CEEMDAN and Wavelet Threshold[J]. Sensors (Basel, Switzerland), 2017, 17(12): 2754 doi: 10.3390/s17122754
|
[28] |
BOUWMANS T, EL BAF F, VACHON B. Background modeling using mixture of Gaussians for foreground detection-a survey[J]. Recent Patents on Computer Science, 2008, 1(3): 219-237 doi: 10.2174/2213275910801030219
|
[29] |
HADHOUD M M, THOMAS D W. The two-dimensional adaptive LMS (TDLMS) algorithm[J]. IEEE Transactions on Circuits and Systems, 1988, 35(5): 485-494 doi: 10.1109/31.1775
|
[30] |
SONI T, ZEIDLER J R, KU W H. Performance evaluation of 2-D adaptive prediction filters for detection of small objects in image data[J]. IEEE Transactions on Image Processing, 1993, 2(3): 327-340 doi: 10.1109/83.236534
|