Volume 43 Issue 1
Jan.  2023
Turn off MathJax
Article Contents
WANG Cunyuan, ZHENG Wei, LI Mingtao. Dim Small Object Detection Method Based on Statistical Feature Space Extraction and SVM (in Chinese). Chinese Journal of Space Science, 2023, 43(1): 119-128 doi: 10.11728/cjss2023.01.211231136
Citation: WANG Cunyuan, ZHENG Wei, LI Mingtao. Dim Small Object Detection Method Based on Statistical Feature Space Extraction and SVM (in Chinese). Chinese Journal of Space Science, 2023, 43(1): 119-128 doi: 10.11728/cjss2023.01.211231136

Dim Small Object Detection Method Based on Statistical Feature Space Extraction and SVM

doi: 10.11728/cjss2023.01.211231136 cstr: 32142.14.cjss2023.01.211231136
  • Received Date: 2021-12-30
  • Accepted Date: 2022-03-22
  • Rev Recd Date: 2022-10-16
  • Available Online: 2023-02-14
  • Small object detection is the premise of small object defense and early warning. Aiming at the problems of low signal-to-noise ratio and difficult detection of small object targets, a very dark and weak small object detection method based on statistical feature space extraction and SVM is proposed. It is different from traditional methods to detect targets based on the instantaneous energy difference or the accumulation of instantaneous energy difference between target energy and background noise energy in time or space. This method does not directly depend on the target energy, but extracts the disturbance to the stability when the moving target passes through the background to retrieve the moving target. The input image sequence is transformed into a single pixel timing signal, the timing window is divided, the statistical features are extracted, the statistical feature space is formed by correlation, and the target change is detected by using the change characteristics of higher dimensions. The method is implemented by Support Vector Machine (SVM) transforms the dim small object detection problem into the binary classification problem of target and background, so that the method avoids the thorny threshold segmentation problem and has better generalization performance. Through the comparative analysis between real data and other classical methods, the classification accuracy is increased by 4.02%. This method can adapt to lower signal-to-noise ratio and still perform well at very low signal-to-noise ratio Stable detection performance.

     

  • loading
  • [1]
    XUE D N, SUN J Q, HU Y Q, et al. Dim small target detection based on convolutinal neural network in star image[J]. Multimedia Tools and Applications, 2020, 79(7): 4681-4698
    [2]
    LI Y S, LI Z Z, ZHANG C, et al. Infrared maritime dim small target detection based on spatiotemporal cues and directional morphological filtering[J]. Infrared Physics & Technology, 2021, 115: 103657
    [3]
    BAI X Z, ZHOU F G. Analysis of new top-hat transformation and the application for infrared dim small target detection[J]. Pattern Recognition, 2010, 43(6): 2145-2156 doi: 10.1016/j.patcog.2009.12.023
    [4]
    MENG W, JIN T, ZHAO X W. Adaptive method of dim small object detection with heavy clutter[J]. Applied Optics, 2013, 52(10): D64-D74 doi: 10.1364/AO.52.000D64
    [5]
    XU Y L, WANG W H. A method for single frame detection of infrared dim small target in complex background[J]. Journal of Physics: Conference Series, 2020, 1634(1): 012063 doi: 10.1088/1742-6596/1634/1/012063
    [6]
    QI S X, MA J, TAO C, et al. A robust directional saliency-based method for infrared small-target detection under various complex backgrounds[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(3): 495-499 doi: 10.1109/LGRS.2012.2211094
    [7]
    YANG C C, MA J Y, ZHANG M F, et al. Multiscale facet model for infrared small target detection[J]. Infrared Physics & Technology, 2014, 67: 202-209
    [8]
    LI H, TAN Y H, LI Y S, et al. Image layering based small infrared target detection method[J]. Electronics Letters, 2014, 50(1): 42-44 doi: 10.1049/el.2013.3042
    [9]
    CHEN C L P, LI H, WEI Y T, et al. A local contrast method for small infrared target detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(1): 574-581 doi: 10.1109/TGRS.2013.2242477
    [10]
    GAO C Q, MENG D Y, YANG Y, et al. Infrared patch-image model for small target detection in a single image[J]. IEEE Transactions on Image Processing, 2013, 22(12): 4996-5009 doi: 10.1109/TIP.2013.2281420
    [11]
    HAN J H, MA Y, ZHOU B, et al. A robust infrared small target detection algorithm based on human visual system[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(12): 2168-2172 doi: 10.1109/LGRS.2014.2323236
    [12]
    HE L H, GE L. CamShift target tracking based on the combination of inter-frame difference and background difference[C]//2018 37 th Chinese Control Conference (CCC). Wuhan, China: IEEE, 2018: 889-893
    [13]
    CHEN H, BOHUSH R P, CHEN C, et al. Estimation of people movement in video based on optical flow block method and motion maps[J]. Pattern Recognition and Image Analysis, 2021, 31(2): 261-270 doi: 10.1134/S105466182102005X
    [14]
    ZHANG T, SONG C F. Object detection based on minimum convex hull and generalized Hough transform[J]. IOP Conference Series: Materials Science and Engineering, 2020, 768(7): 072058 doi: 10.1088/1757-899X/768/7/072058
    [15]
    TESTOLIN A, DIAMANT R. Combining denoising autoencoders and dynamic programming for acoustic detection and tracking of underwater moving targets)[J]. Sensors, 2020, 20(10): 2945 doi: 10.3390/s20102945
    [16]
    BOSQUET B, MUCIENTES M, BREA V M. STDnet-ST: Spatio-temporal ConvNet for small object detection[J]. Pattern Recognition, 2021, 116: 107929 doi: 10.1016/j.patcog.2021.107929
    [17]
    DU J M, LI D Y, DENG Y J, et al. Multiple frames based infrared small target detection method using CNN[C]//2021 4 th International Conference on Algorithms, Computing and Artificial Intelligence (ACAi 2021). Sanya, China: Association for Computing Machinery, 2021: 397-402
    [18]
    KUMAR S S, ABRAHAM D M, JAHANSHAHI M R, et al. Automated defect classification in sewer closed circuit television inspections using deep convolutional neural networks[J]. Automation in Construction, 2018, 91: 273-283 doi: 10.1016/j.autcon.2018.03.028
    [19]
    REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: Unified, real-time object detection[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, NV, USA: IEEE, 2015: 779-788
    [20]
    REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, HI, USA: IEEE, 2016: 6517-6525
    [21]
    LIU W, ANGUELOV D, ERHAN D, et al. SSD: Single shot MultiBox detector[C]//14 th European Conference on Computer Vision. Amsterdam, The Netherlands: Springer, 2016: 21-37
    [22]
    GIRSHICK R. Fast R-CNN[C]//2015 IEEE International Conference on Computer Vision. Santiago, Chile: IEEE, 2015: 1440-1448
    [23]
    REN SQ, HE K M, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[C]//International Conference on Neural Information Processing Systems. Cambridge: MIT Press, 2015: 91-99
    [24]
    HE K M, GEORGIA G, DOLLÁR P, et al. Mask R-CNN[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(2): 386-397 doi: 10.1109/TPAMI.2018.2844175
    [25]
    PATAN G, BARSKY B A. An Introduction to Laplacian Spectral Distances and Kernels: Theory, Computation, and Applications[M]. San Rafael: Morgan & Claypool Publishers, 2017
    [26]
    DESHPANDE S D, ER M H, VENKATESWARLU R, et al. Max-mean and max-median filters for detection of small targets[J]. Proceedings of the SPIE, 1999, 3809: 74-83 doi: 10.1117/12.364049
    [27]
    XU Y, LUO M Z, LI T, et al. ECG signal De-noising and baseline wander correction based on CEEMDAN and Wavelet Threshold[J]. Sensors (Basel, Switzerland), 2017, 17(12): 2754 doi: 10.3390/s17122754
    [28]
    BOUWMANS T, EL BAF F, VACHON B. Background modeling using mixture of Gaussians for foreground detection-a survey[J]. Recent Patents on Computer Science, 2008, 1(3): 219-237 doi: 10.2174/2213275910801030219
    [29]
    HADHOUD M M, THOMAS D W. The two-dimensional adaptive LMS (TDLMS) algorithm[J]. IEEE Transactions on Circuits and Systems, 1988, 35(5): 485-494 doi: 10.1109/31.1775
    [30]
    SONI T, ZEIDLER J R, KU W H. Performance evaluation of 2-D adaptive prediction filters for detection of small objects in image data[J]. IEEE Transactions on Image Processing, 1993, 2(3): 327-340 doi: 10.1109/83.236534
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(2)

    Article Metrics

    Article Views(496) PDF Downloads(60) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return