Citation: | CHEN Xuelei, YAN Jingye, XU Yidong, DENG Li, WU Fengquan, WU Lin, ZHOU Li, ZHANG Xiaofeng, ZHU Xiaocheng, YANG Zhongguang, WU Ji. Discovering the Sky at the Longest Wavelength Mission-font-horizontal-scale:400%">−A Pathfinder for Exploring the Cosmic Dark Ages (in Chinese). Chinese Journal of Space Science, 2023, 43(1): 43-59 doi: 10.11728/cjss2023.01.220104001 |
[1] |
ALEXANDER J K, KAISER M L, NOVACO J C, et al. Scientific instrumentation of the radio-astronomy-explorer-2 satellite[J]. Astronomy and Astrophysics, 1975, 40(4): 365-371
|
[2] |
陈学雷. 关于开展我国空间低频射电天文学研究的一些设想[C]//中国宇航学会深空探测技术专业委员会第二届学术会议论文集. 北京: 中国宇航学会, 2005: 49-53
CHEN Xuelei. Some thoughts on developing space-based low frequency radio astronomy of our country[C]//Proceedings of the 2 nd Academic Annual Meeting of the Deep Space Exploration Commission of the Chinese Astronautics Society. Beijing: China Academy of Space Technology, 2005: 49-53
|
[3] |
吴季, 阎敬业, 武林, 等, 一种基于卫星编队的成像方法, 专利号201510208120.5
WU Ji, YAN Jingye, WU Lin, et al. An imaging method based on satellite array: CN, 201510208120.5[P]. 2015
|
[4] |
BOONSTRA A J, GARRETT M, KRUITHOF G, et al. Discovering the Sky at the Longest wavelengths (DSL)[C]//2016 IEEE Aerospace Conference. Big Sky: IEEE, 2016: 20
|
[5] |
吴季, 洪晓瑜, 阎敬业, 等. 超长波射电天文望远镜[C]//第二十八届全国空间探测学术研讨会. 兰州: 中国空间科学学会, 2015
WU Ji, HONG Xiaoyu, YAN Jingye, et al. Ultralong wavelength radio astronomy telescope[C]//28 th National Space Exploration Meeting. Lanzhou: Chinese Society of Space Research, 2015
|
[6] |
张锦绣, 陈学雷, 曹喜滨, 等. 月球轨道编队超长波天文观测微卫星任务[J]. 深空探测学报, 2017, 4(2): 158-165 doi: 10.15982/j.issn.2095-7777.2017.02.009
ZHANG Jinxiu, CHEN Xuelei, CAO Xibin, et al. Formation flying around lunar for ultra-long wave radio interferometer mission[J]. Journal of Deep Space Exploration, 2017, 4(2): 158-165 doi: 10.15982/j.issn.2095-7777.2017.02.009
|
[7] |
YAN J, WU J, GURVITS L I, et al. Ultra-low-frequency radio astronomy observations from a selenocentric orbit: first results of the Longjiang-2 experiments. Experimental Astronomy, in print, preprint arxiv: 2212.09590
|
[8] |
CHEN X L, BURNS J, KOOPMANS L, et al. Discovering the sky at the longest wavelengths with small satellite constellations[OL]. arXiv preprint arxiv: 1907.10853, 2019
|
[9] |
CHEN X L, YAN J Y, DENG L, et al. Discovering the sky at the longest wavelengths with a lunar orbit array[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2021, 379(2188): 20190566 doi: 10.1098/rsta.2019.0566
|
[10] |
CHEN X L, MIRALDA-ESCUDÉ J. The spin-kinetic temperature coupling and the heating rate due to Lyα scattering before reionization: predictions for 21 centimeter emission and absorption[J]. The Astrophysical Journal, 2004, 602(1): 1-11 doi: 10.1086/380829
|
[11] |
CHEN X L, MIRALDA-ESCUDÉ J. The 21 cm signature of the first stars[J]. The Astrophysical Journal, 2008, 684(1): 18-33 doi: 10.1086/528941
|
[12] |
BOWMAN J D, ROGERS A E E, MONSALVE R A, et al. An absorption profile centred at 78 megahertz in the sky-averaged spectrum[J]. Nature, 2018, 555(7694): 67-70 doi: 10.1038/nature25792
|
[13] |
BARKANA R. Possible interaction between baryons and dark-matter particles revealed by the first stars[J]. Nature, 2018, 555(7694): 71-74 doi: 10.1038/nature25791
|
[14] |
SINGH S, NAMBISSAN T J, SUBRAHMANYAN R, et al. On the detection of a cosmic dawn signal in the radio background[J]. Nature Astronomy, 2022, 6(5): 607-617 doi: 10.1038/s41550-022-01610-5
|
[15] |
VEDANTHAM H K, KOOPMANS L V E. Scintillation noise power spectrum and its impact on high-redshift 21-cm observations[J]. Monthly Notices of the Royal Astronomical Society, 2016, 458(3): 3099-3117 doi: 10.1093/mnras/stw443
|
[16] |
SHEN E, ANSTEY D, DE LERA ACEDO E, et al. Quantifying ionospheric effects on global 21-cm observations[J]. Monthly Notices of the Royal Astronomical Society, 2021, 503(1): 344-353 doi: 10.1093/mnras/stab429
|
[17] |
BRADLEY R F, TAUSCHER K, RAPETTI D, et al. A ground plane artifact that induces an absorption profile in averaged spectra from global 21 cm measurements, with possible application to EDGES[J]. The Astrophysical Journal, 2019, 874(2): 153 doi: 10.3847/1538-4357/ab0d8b
|
[18] |
SILK J, CRAWFORD I, ELVIS M, et al. Astronomy from the Moon: the next decades[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2021, 379(2188): 20190560 doi: 10.1098/rsta.2019.0560
|
[19] |
KOOPMANS L V E, BARKANA R, BENTUM M, et al. Peering into the dark (ages) with low-frequency space interferometers[J]. Experimental Astronomy, 2021, 51(3): 1641-1676 doi: 10.1007/s10686-021-09743-7
|
[20] |
BURNS J O. Transformative Science from the lunar farside: observations of the dark ages and exoplanetary systems at low radio frequencies[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2021, 379(2188): 20190564 doi: 10.1098/rsta.2019.0564
|
[21] |
CONG Y P, YUE B, XU Y D, et al. An ultralong-wavelength sky model with absorption effect[J]. The Astrophysical Journal, 2021, 914(2): 128 doi: 10.3847/1538-4357/abf55c
|
[22] |
CONG Y P, YUE B, XU Y D, et al. A new method of reconstructing Galactic 3 D structures using ultralong-wavelength radio observations[J]. The Astrophysical Journal, 2022, 940(2): 180 doi: 10.3847/1538-4357/ac9df7
|
[23] |
LIU A, PRITCHARD J R, TEGMARK M, et al. Global 21 cm signal experiments: a designer’s guide[J]. Physical Review D, 2013, 87(4): 043002 doi: 10.1103/PhysRevD.87.043002
|
[24] |
MOZDZEN T J, BOWMAN J D, MONSALVE R A, et al. Limits on foreground subtraction from chromatic beam effects in global redshifted 21 cm measurements[J]. Monthly Notices of the Royal Astronomical Society, 2016, 455(4): 3890-3900 doi: 10.1093/mnras/stv2601
|
[25] |
GU J H, WANG J Y. Direct parameter inference from global EoR signal with Bayesian statistics[J]. Monthly Notices of the Royal Astronomical Society, 2020, 492(3): 4080-4096 doi: 10.1093/mnras/staa052
|
[26] |
SHI Y, DENG F R, XU Y D, et al. Lunar orbit measurement of the cosmic dawn’s 21 cm global spectrum[J]. The Astrophysical Journal, 2022, 929(1): 32 doi: 10.3847/1538-4357/ac5965
|
[27] |
SINGH S, SUBRAHMANYAN R, SHANKAR N U, et al. SARAS 2: a spectral radiometer for probing cosmic dawn and the epoch of reionization through detection of the global 21-cm signal[J]. Experimental Astronomy, 2018, 45(2): 269-314 doi: 10.1007/s10686-018-9584-3
|
[28] |
HUANG Q Z, SUN S J, ZUO S F, et al. An imaging algorithm for a lunar orbit interferometer array[J]. The Astronomical Journal, 2018, 156(2): 43 doi: 10.3847/1538-3881/aac6c6
|
[29] |
SHI Y, XU Y D, DENG L, et al. Imaging sensitivity of a linear interferometer array on lunar orbit[J]. Monthly Notices of the Royal Astronomical Society, 2022, 510(2): 3046-3062 doi: 10.1093/mnras/stab3623
|