Volume 43 Issue 1
Jan.  2023
Turn off MathJax
Article Contents
CHEN Xuelei, YAN Jingye, XU Yidong, DENG Li, WU Fengquan, WU Lin, ZHOU Li, ZHANG Xiaofeng, ZHU Xiaocheng, YANG Zhongguang, WU Ji. Discovering the Sky at the Longest Wavelength Mission-font-horizontal-scale:400%'>−A Pathfinder for Exploring the Cosmic Dark Ages (in Chinese). Chinese Journal of Space Science, 2023, 43(1): 43-59 doi: 10.11728/cjss2023.01.220104001
Citation: CHEN Xuelei, YAN Jingye, XU Yidong, DENG Li, WU Fengquan, WU Lin, ZHOU Li, ZHANG Xiaofeng, ZHU Xiaocheng, YANG Zhongguang, WU Ji. Discovering the Sky at the Longest Wavelength Mission-font-horizontal-scale:400%">−A Pathfinder for Exploring the Cosmic Dark Ages (in Chinese). Chinese Journal of Space Science, 2023, 43(1): 43-59 doi: 10.11728/cjss2023.01.220104001

Discovering the Sky at the Longest Wavelength Mission−A Pathfinder for Exploring the Cosmic Dark Ages

doi: 10.11728/cjss2023.01.220104001 cstr: 32142.14.cjss2023.01.220104001
  • Received Date: 2021-12-31
  • Accepted Date: 2022-04-13
  • Rev Recd Date: 2022-10-11
  • Available Online: 2023-02-03
  • In this paper we describe a low frequency radio astronomy mission known as the DSL project (also “Hongmeng Project” in Chinese). It is an interferometer array made up of a formation of satellites in a lunar orbit, which makes ultralong wavelength observations in the part of orbit behind the Moon. The scientific objectives include making high precision measurement of the global spectrum, probing the cosmic dawn and dark ages; realizing ultra-long wavelength sky survey with a high resolution for the first time, opening up the last unexplored electromagnetic window; monitoring the radio activity of the Sun and planets, analyzing their interactions in the interplanetary space. The mission will obtain the whole sky map in the ultralong wavelength, and provide information on the intensity, spectrum and distribution of ultralong wavelength radio sources. It has great scientific value for the exploration of the cosmic dark ages and cosmic dawn, and investigations on the interstellar medium, origin and propagation of cosmic rays, extragalactic radio galaxies and quasars, evolution of clusters and groups of galaxies, solar activities, and planetary magnetic field.

     

  • loading
  • [1]
    ALEXANDER J K, KAISER M L, NOVACO J C, et al. Scientific instrumentation of the radio-astronomy-explorer-2 satellite[J]. Astronomy and Astrophysics, 1975, 40(4): 365-371
    [2]
    陈学雷. 关于开展我国空间低频射电天文学研究的一些设想[C]//中国宇航学会深空探测技术专业委员会第二届学术会议论文集. 北京: 中国宇航学会, 2005: 49-53

    CHEN Xuelei. Some thoughts on developing space-based low frequency radio astronomy of our country[C]//Proceedings of the 2 nd Academic Annual Meeting of the Deep Space Exploration Commission of the Chinese Astronautics Society. Beijing: China Academy of Space Technology, 2005: 49-53
    [3]
    吴季, 阎敬业, 武林, 等, 一种基于卫星编队的成像方法, 专利号201510208120.5

    WU Ji, YAN Jingye, WU Lin, et al. An imaging method based on satellite array: CN, 201510208120.5[P]. 2015
    [4]
    BOONSTRA A J, GARRETT M, KRUITHOF G, et al. Discovering the Sky at the Longest wavelengths (DSL)[C]//2016 IEEE Aerospace Conference. Big Sky: IEEE, 2016: 20
    [5]
    吴季, 洪晓瑜, 阎敬业, 等. 超长波射电天文望远镜[C]//第二十八届全国空间探测学术研讨会. 兰州: 中国空间科学学会, 2015

    WU Ji, HONG Xiaoyu, YAN Jingye, et al. Ultralong wavelength radio astronomy telescope[C]//28 th National Space Exploration Meeting. Lanzhou: Chinese Society of Space Research, 2015
    [6]
    张锦绣, 陈学雷, 曹喜滨, 等. 月球轨道编队超长波天文观测微卫星任务[J]. 深空探测学报, 2017, 4(2): 158-165 doi: 10.15982/j.issn.2095-7777.2017.02.009

    ZHANG Jinxiu, CHEN Xuelei, CAO Xibin, et al. Formation flying around lunar for ultra-long wave radio interferometer mission[J]. Journal of Deep Space Exploration, 2017, 4(2): 158-165 doi: 10.15982/j.issn.2095-7777.2017.02.009
    [7]
    YAN J, WU J, GURVITS L I, et al. Ultra-low-frequency radio astronomy observations from a selenocentric orbit: first results of the Longjiang-2 experiments. Experimental Astronomy, in print, preprint arxiv: 2212.09590
    [8]
    CHEN X L, BURNS J, KOOPMANS L, et al. Discovering the sky at the longest wavelengths with small satellite constellations[OL]. arXiv preprint arxiv: 1907.10853, 2019
    [9]
    CHEN X L, YAN J Y, DENG L, et al. Discovering the sky at the longest wavelengths with a lunar orbit array[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2021, 379(2188): 20190566 doi: 10.1098/rsta.2019.0566
    [10]
    CHEN X L, MIRALDA-ESCUDÉ J. The spin-kinetic temperature coupling and the heating rate due to Lyα scattering before reionization: predictions for 21 centimeter emission and absorption[J]. The Astrophysical Journal, 2004, 602(1): 1-11 doi: 10.1086/380829
    [11]
    CHEN X L, MIRALDA-ESCUDÉ J. The 21 cm signature of the first stars[J]. The Astrophysical Journal, 2008, 684(1): 18-33 doi: 10.1086/528941
    [12]
    BOWMAN J D, ROGERS A E E, MONSALVE R A, et al. An absorption profile centred at 78 megahertz in the sky-averaged spectrum[J]. Nature, 2018, 555(7694): 67-70 doi: 10.1038/nature25792
    [13]
    BARKANA R. Possible interaction between baryons and dark-matter particles revealed by the first stars[J]. Nature, 2018, 555(7694): 71-74 doi: 10.1038/nature25791
    [14]
    SINGH S, NAMBISSAN T J, SUBRAHMANYAN R, et al. On the detection of a cosmic dawn signal in the radio background[J]. Nature Astronomy, 2022, 6(5): 607-617 doi: 10.1038/s41550-022-01610-5
    [15]
    VEDANTHAM H K, KOOPMANS L V E. Scintillation noise power spectrum and its impact on high-redshift 21-cm observations[J]. Monthly Notices of the Royal Astronomical Society, 2016, 458(3): 3099-3117 doi: 10.1093/mnras/stw443
    [16]
    SHEN E, ANSTEY D, DE LERA ACEDO E, et al. Quantifying ionospheric effects on global 21-cm observations[J]. Monthly Notices of the Royal Astronomical Society, 2021, 503(1): 344-353 doi: 10.1093/mnras/stab429
    [17]
    BRADLEY R F, TAUSCHER K, RAPETTI D, et al. A ground plane artifact that induces an absorption profile in averaged spectra from global 21 cm measurements, with possible application to EDGES[J]. The Astrophysical Journal, 2019, 874(2): 153 doi: 10.3847/1538-4357/ab0d8b
    [18]
    SILK J, CRAWFORD I, ELVIS M, et al. Astronomy from the Moon: the next decades[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2021, 379(2188): 20190560 doi: 10.1098/rsta.2019.0560
    [19]
    KOOPMANS L V E, BARKANA R, BENTUM M, et al. Peering into the dark (ages) with low-frequency space interferometers[J]. Experimental Astronomy, 2021, 51(3): 1641-1676 doi: 10.1007/s10686-021-09743-7
    [20]
    BURNS J O. Transformative Science from the lunar farside: observations of the dark ages and exoplanetary systems at low radio frequencies[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2021, 379(2188): 20190564 doi: 10.1098/rsta.2019.0564
    [21]
    CONG Y P, YUE B, XU Y D, et al. An ultralong-wavelength sky model with absorption effect[J]. The Astrophysical Journal, 2021, 914(2): 128 doi: 10.3847/1538-4357/abf55c
    [22]
    CONG Y P, YUE B, XU Y D, et al. A new method of reconstructing Galactic 3 D structures using ultralong-wavelength radio observations[J]. The Astrophysical Journal, 2022, 940(2): 180 doi: 10.3847/1538-4357/ac9df7
    [23]
    LIU A, PRITCHARD J R, TEGMARK M, et al. Global 21 cm signal experiments: a designer’s guide[J]. Physical Review D, 2013, 87(4): 043002 doi: 10.1103/PhysRevD.87.043002
    [24]
    MOZDZEN T J, BOWMAN J D, MONSALVE R A, et al. Limits on foreground subtraction from chromatic beam effects in global redshifted 21 cm measurements[J]. Monthly Notices of the Royal Astronomical Society, 2016, 455(4): 3890-3900 doi: 10.1093/mnras/stv2601
    [25]
    GU J H, WANG J Y. Direct parameter inference from global EoR signal with Bayesian statistics[J]. Monthly Notices of the Royal Astronomical Society, 2020, 492(3): 4080-4096 doi: 10.1093/mnras/staa052
    [26]
    SHI Y, DENG F R, XU Y D, et al. Lunar orbit measurement of the cosmic dawn’s 21 cm global spectrum[J]. The Astrophysical Journal, 2022, 929(1): 32 doi: 10.3847/1538-4357/ac5965
    [27]
    SINGH S, SUBRAHMANYAN R, SHANKAR N U, et al. SARAS 2: a spectral radiometer for probing cosmic dawn and the epoch of reionization through detection of the global 21-cm signal[J]. Experimental Astronomy, 2018, 45(2): 269-314 doi: 10.1007/s10686-018-9584-3
    [28]
    HUANG Q Z, SUN S J, ZUO S F, et al. An imaging algorithm for a lunar orbit interferometer array[J]. The Astronomical Journal, 2018, 156(2): 43 doi: 10.3847/1538-3881/aac6c6
    [29]
    SHI Y, XU Y D, DENG L, et al. Imaging sensitivity of a linear interferometer array on lunar orbit[J]. Monthly Notices of the Royal Astronomical Society, 2022, 510(2): 3046-3062 doi: 10.1093/mnras/stab3623
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(6)

    Article Metrics

    Article Views(1898) PDF Downloads(235) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return