Volume 43 Issue 1
Jan.  2023
Turn off MathJax
Article Contents
SONG Huating, LIU Yurong. Multivariate Engineering Parameter Anomaly Detection of the Satellite Based on Similarity Metric of the Symbolic Representation (in Chinese). Chinese Journal of Space Science, 2023, 43(1): 164-173 doi: 10.11728/cjss2023.01.220112004
Citation: SONG Huating, LIU Yurong. Multivariate Engineering Parameter Anomaly Detection of the Satellite Based on Similarity Metric of the Symbolic Representation (in Chinese). Chinese Journal of Space Science, 2023, 43(1): 164-173 doi: 10.11728/cjss2023.01.220112004

Multivariate Engineering Parameter Anomaly Detection of the Satellite Based on Similarity Metric of the Symbolic Representation

doi: 10.11728/cjss2023.01.220112004 cstr: 32142.14.cjss2023.01.220112004
  • Received Date: 2022-01-12
  • Accepted Date: 2022-03-18
  • Rev Recd Date: 2022-11-10
  • Available Online: 2023-02-13
  • The complexity of the satellite system is increasing, and the comprehensive analysis of the abnormal correlation between the satellite with multiple parameters is important for the safe operation of the satellite and the correct execution of space tasks. Aiming at the characteristics of large amount of engineering parameter data, high parameter correlation and pseudo-period, a satellite multivariate engineering parameter anomaly detection method based on symbolized representation similarity measurement is proposed. Using real satellite engineering parameter data, based on Symbol Aggregation Algorithm (SAX), this paper studies the anomaly detection problem of satellite multiple engineering parameters, solves the problem of the context information, realizes effective fusion, and forms an optimized anomaly detection algorithm based on similarity measurement Fast-DTW algorithm. Results show that during the abnormality detection process, the recall, precision and F1 score are 0.947, 0.9 and 0.923 respectively in the real satellite power subsystem, and the algorithm can be actually used in satellite anomaly detection to improve the safety of satellite in-orbit operation.

     

  • loading
  • [1]
    张晓芳, 刘松涛, 吴耀平. 影响卫星故障的空间天气分析[J]. 空间科学学报, 2015, 35(4): 461-472

    ZHANG Xiaofang, LIU Songtao, WU Yaoping. Statistical analysis of space weather effects on satellites anomalies[J]. Chinese Journal of Space Science, 2015, 35(4): 461-472
    [2]
    庞景月. 基于概率性预测的航天器遥测数据异常检测方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2019

    PANG Jingyue. Probabilistic Prediction Based Anomaly Detection Method for Spacecraft Telemetry Data[D]. Harbin: Harbin Institute of Technology, 2019
    [3]
    杨甲森, 孟新, 陈托, 等. 基于遥测数据相关性的航天器异常检测[J]. 仪器仪表学报, 2018, 39(8): 24-33

    YANG Jiasen, MENG Xin, CHEN Tuo, et al. Anomaly detection of spacecraft based on the telemetry data correlation[J]. Chinese Journal of Scientific Instrument, 2018, 39(8): 24-33
    [4]
    HUNDMAN K, CONSTANTINOU V, LAPORTE C, et al. Detecting spacecraft anomalies using LSTMs and nonparametric dynamic thresholding[C]//Proceedings of the 24 th ACM Sigkdd International Conference on Knowledge Discovery & Data Mining. London: ACM, 2018: 387-395
    [5]
    张薇, 肖志刚, 李博权. 故障树专家系统在有效载荷状态诊断的应用[J]. 计算机技术与发展, 2014, 24(12): 28-31,36

    ZHANG Wei, XIAO Zhigang, LI Boquan. Application of fault tree expert system in diagnosis about payload status[J]. Computer Technology and Development, 2014, 24(12): 28-31,36
    [6]
    FIGUEROA F, UNDERWOOD L, WALKER M G, et al. NASA platform for autonomous systems (NPAS)[C]//AIAA SciTech. San Diego: AIAA, 2019
    [7]
    BERNDT D J, CLIFFORD J. Using dynamic time warping to find patterns in time series[C]//Proceedings of the 3 rd International Conference on Knowledge Discovery and Data Mining. Seattle: ACM, 1994: 359-370
    [8]
    田林琳. 基于深度学习及GPU计算的航天器故障检测技术[J]. 计算机测量与控制, 2020, 28(5): 1-4,9

    TIAN Linlin. Spacecraft fault detection technology based on deep learning and GPU computing[J]. Computer Measurement & Control, 2020, 28(5): 1-4,9
    [9]
    顾昕雨. 基于ARIMA-SVR组合模型的卫星遥测数据预测研究[D]. 北京: 中国科学院大学(中国科学院国家空间科学中心), 2021

    GU Xinyu. Research on Satellite Telemetry Data Prediction based on ARIMA-SVR Combination Model[D]. Beijing: University of Chinese Academy of Sciences (National Space Science Center, Chinese Academy of Sciences), 2021
    [10]
    王伟, 王建东, 张霞. 基于改进符号化度量方法的机场噪声异常检测[J]. 计算机与现代化, 2014(8): 5-10

    WANG Wei, WANG Jiandong, ZHANG Xia. An anomaly detection method of airport-noise time series based on improved SAX measurement[J]. Computer and Modernization, 2014(8): 5-10
    [11]
    阮辉, 刘雷, 胡晓光. 基于趋势符号聚合近似的卫星时序数据分类方法[J]. 北京航空航天大学学报, 2021, 47(2): 333-341

    RUAN Hui, LIU Lei, HU Xiaoguang. Satellite time series data classification method based on trend symbolic aggregation approximation[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(2): 333-341
    [12]
    王见, 毛黎明, 尹爱军. 结合形状特征及其上下文的多维DTW[J]. 计算机工程与应用, 2020, 56(22): 42-47 doi: 10.3778/j.issn.1002-8331.1912-0320

    WANG Jian, MAO Liming, YIN Aijun. Multi-dimensional DTW combined with shape feature and context information[J]. Computer Engineering and Applications, 2020, 56(22): 42-47 doi: 10.3778/j.issn.1002-8331.1912-0320
    [13]
    杜莹, 李四虎, 胡绍林, 等. 遥测伪周期时间序列子序列异常检测算法[J]. 中国空间科学技术, 2016, 36(5): 18-24

    DU Ying, LI Sihu, HU Shaolin, et al. Detection algorithm of abnormal sub-sequence in pseudo periodic time series of telemetry[J]. Chinese Space Science and Technology, 2016, 36(5): 18-24
    [14]
    LIN J, KEOGH E, WEI L, et al. Experiencing SAX: a novel symbolic representation of time series[J]. Data Mining and Knowledge Discovery, 2007, 15(2): 107-144 doi: 10.1007/s10618-007-0064-z
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(6)

    Article Metrics

    Article Views(368) PDF Downloads(31) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return