Volume 43 Issue 1
Jan.  2023
Turn off MathJax
Article Contents
WU Wei, LIU Chao, ZHANG Xianguo, ZHANG Aibing, SUN Yueqiang. Research on a Low Energy Tele-focus Electron Gun (in Chinese). Chinese Journal of Space Science, 2023, 43(1): 144-155 doi: 10.11728/cjss2023.01.220208013
Citation: WU Wei, LIU Chao, ZHANG Xianguo, ZHANG Aibing, SUN Yueqiang. Research on a Low Energy Tele-focus Electron Gun (in Chinese). Chinese Journal of Space Science, 2023, 43(1): 144-155 doi: 10.11728/cjss2023.01.220208013

Research on a Low Energy Tele-focus Electron Gun

doi: 10.11728/cjss2023.01.220208013 cstr: 32142.14.cjss2023.01.220208013
  • Received Date: 2022-01-29
  • Accepted Date: 2022-09-06
  • Rev Recd Date: 2022-10-11
  • Available Online: 2023-02-11
  • A low energy tele-focus electron gun is designed based on a subsystem of movable non-contact lunar surface potential detector. The electron gun consists of a diode extraction source and two three-element electrostatic lenses. The source produces a divergent beam which is then accelerated to energy Ke by lenses, and is focused into the shape of interest. By optimizing the geometric parameters of electron gun and the voltage applied to electrode, the electron beam has good optical characteristics and the electron energy is adjustable from 5 eV to 500 eV continuously. The initial radius r equals to 5 mm, and the distance p from the output electrode to the beam waist equals to 133 mm when the beam energy is 5 eV. As the beam energy increases to 500 eV, initial radius r decreases to 3 mm, and the distance p decreases to 105 mm. The electron beam reflected by lunar electric field is received by the collector plate. When working length H is between 400 mm and 600 mm, the electrons received by plate account for more than 96% of the beam electrons. The mass of the electron gun is only 408 g, which can meet the requirements of electron guns for lunar exploration.

     

  • loading
  • [1]
    WALTON O R. Adhesion of Lunar Dust[R]. Livermore, CA: Grainflow Dynamics Inc. , 2007
    [2]
    ÖPIK E J, SINGER S F. Escape of gases from the Moon[J]. Journal of Geophysical Research, 1960, 65(10): 3065-3070 doi: 10.1029/JZ065i010p03065
    [3]
    GROBMAN W D, BLANK J L. Electrostatic potential distribution of the sunlit lunar surface[J]. Journal of Geophysical Research, 1969, 74(16): 3943-3951 doi: 10.1029/JA074i016p03943
    [4]
    MANKA R H. Plasma and potential at the lunar surface[M]//Photon and Particle Interactions with Surfaces in Space. Noordwijk, the Netherlands: Springer, 1973: 347-361
    [5]
    FREEMAN J W, IBRAHIM M. Lunar electric fields, surface potential and associated plasma sheaths[J]. The Moon, 1975, 14(1): 103-114 doi: 10.1007/BF00562976
    [6]
    HALEKAS J S, DELORY G T, BRAIN D A, et al. Extreme lunar surface charging during solar energetic particle events[J]. Geophysical Research Letters, 2007, 34(2): L02111
    [7]
    王馨悦, 张爱兵, 荆涛, 等. 高能电子爆发与绕月卫星表面电位大幅下降的联动效应[J]. 地球物理学报, 2016, 59(10): 3533-3542 doi: 10.6038/cjg20161001

    WANG Xinyue, ZHANG Aibing, JING Tao. Synchronization of energetic electron bursting and lunar orbiter surface charging to negative kilovolts[J]. Chinese Journal of Geophysics, 2016, 59(10): 3533-3542 doi: 10.6038/cjg20161001
    [8]
    KONG L G, ZHANG A B, TIAN Z, et al. Mars ion and neutral particle analyzer (MINPA) for Chinese Mars Exploration Mission (Tianwen-1): Design and ground calibration[J]. Earth and Planetary Physics, 2020, 4(4): 333-344
    [9]
    MANKA R H, MICHEL F C. Lunar atmosphere as a source of argon-40 and other lunar surface elements[J]. Science, 1970, 169(3942): 278-280 doi: 10.1126/science.169.3942.278
    [10]
    RUSSELL C T, COLEMAN P J JR, GOLDSTEIN B E. Measurements of the lunar induced magnetic moment in the geomagnetic tail - Evidence for a lunar core[C]//Lunar and Planetary Science Conference. Houston, TX: Pergamon Press, 1982: 831-836
    [11]
    欧阳自远. 月球科学概论[M]. 北京: 中国宇航出版社, 2005

    OUYANG Ziyuan. Introduction to Lunar Science[M]. Beijing: China Astronautic Publishing House, 2005
    [12]
    谢良海, 张爱兵, 李磊, 等. 嫦娥四号能量中性原子观测揭示太阳风与月面相互作用新特征[J]. 空间科学学报, 2022, 42(1): 11-24 doi: 10.11728/cjss2022.01.20220113

    XIE Lianghai, ZHANG Aibing, LI Lei, et al. Chang’E-4 energetic neutral atom observation reveals new features about the solar wind–moon interaction[J]. Chinese Journal of Space Science, 2022, 42(1): 11-24 doi: 10.11728/cjss2022.01.20220113
    [13]
    滕庆. 带电颗粒在月表电场中运动的动力学分析[D]. 哈尔滨: 哈尔滨工业大学, 2015

    TENG Qing. The Dynamics Analysis of Charged Particles in the Electric Field of Lunar Surface[D]. Harbin: Harbin Institute of Technology, 2015
    [14]
    PIERCE J R. Theory and Design of Electron Beams[M]. New York: Van Nostrand Co. , Inc. , 1954
    [15]
    Алямовскнй И В. Electron Beam and Electron Gun[M]. Beijing: Vacuum Tube Technology Editorial Team, 1974
    [16]
    STOFFEL N G, JOHNSON P D. A low-energy high-brightness electron gun for inverse photoemission[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1985, 234(2): 230-234
    [17]
    JACKSON T L, FARRELL W M, ZIMMERMAN M I. Rover wheel charging on the lunar surface[J]. Advances in Space Research, 2015, 55(6): 1710-1720 doi: 10.1016/j.asr.2014.12.027
    [18]
    KIRSTEIN P T, KINO G S, WATERS W E, et al. Space-charge flow[J]. Physics Today, 1968, 21(12): 83
    [19]
    HARTING E, READ F H, BRUNT J N H. Electrostatic Lenses[M]. New York: Elsevier, 1976
    [20]
    刘学悫. 阴极电子学[M]. 北京: 科学出版社, 1980

    LIU Xueque. Cathode Electronics[M]. Beijing: Science Press, 1980
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(22)  / Tables(2)

    Article Metrics

    Article Views(686) PDF Downloads(38) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return