Citation: | GUO Dalei, ZHANG Zhen, ZHU Lingfeng, XUE Bingsen. Generative Model-based of Flare Hierarchic Recognition and Forecast of Extreme Ultraviolet Images in Solar Active Region (in Chinese). Chinese Journal of Space Science, 2023, 43(1): 60-67 doi: 10.11728/cjss2023.01.220214015 |
[1] |
GOLUB L, PASACHOFF J M. Nearest Star: The Surprising Science of Our Sun[M]. Cambridge: Harvard University Press, 2001
|
[2] |
DUDA R O, HART P E, STORK D G. Pattern Classification[M]. Beijing: China Machine Press, 2003
|
[3] |
CHEN Yunji, LI Ling, LI Wei, et al. AI Computing Systems[M]. Beijing: China Machine Press, 2020
|
[4] |
PARK E, MOON Y J, SHIN S, et al. Application of the deep convolutional neural network to the forecast of solar flare occurrence using full-disk solar magnetograms[J]. The Astrophysical Journal, 2018, 869(2): 91 doi: 10.3847/1538-4357/aaed40
|
[5] |
NISHIZUKA N, SUGIURA K, KUBO Y, et al. Deep flare net (DeFN) model for solar flare prediction[J]. The Astrophysical Journal, 2018, 858(2): 113 doi: 10.3847/1538-4357/aab9a7
|
[6] |
HUANG X, WANG H N, XU L, et al. Deep learning based solar flare forecasting model. I. Results for line-of-sight magnetograms[J]. The Astrophysical Journal, 2018, 856(1): 7 doi: 10.3847/1538-4357/aaae00
|
[7] |
SHEN F, YANG Z C, ZHANG J, et al. Three-dimensional MHD simulation of solar wind using a new boundary treatment: comparison with in situ data at Earth[J]. The Astrophysical Journal, 2018, 866(1): 18 doi: 10.3847/1538-4357/aad806
|
[8] |
杨易, 沈芳, 杨子才. 多种观测数据驱动的三维行星际太阳风MHD模拟[J]. 空间科学学报, 2020, 40(3): 305-314 doi: 10.11728/cjss2020.03.305
YANG Yi, SHEN Fang, YANG Zicai. Simulation of interplanetary solar wind with three-dimensional MHD model driven by multiple observations[J]. Chinese Journal of Space Science, 2020, 40(3): 305-314 doi: 10.11728/cjss2020.03.305
|
[9] |
GALVEZ R, FOUHEY D F, JIN M, et al. A machine-learning data set prepared from the NASA solar dynamics observatory mission[J]. The Astrophysical Journal Supplement Series, 2019, 242(1): 7 doi: 10.3847/1538-4365/ab1005
|
[10] |
HE K M, ZHANG X Y, REN S Q, et al. Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification[C]//2015 IEEE International Conference on Computer Vision (ICCV). Santiago, Chile: IEEE, 2015: 1026-1034
|
[11] |
ALIPOUR N, MOHAMMADI F, SAFARI H. Prediction of flares within 10 days before they occur on the sun[J]. The Astrophysical Journal Supplement Series, 2019, 243(2): 20 doi: 10.3847/1538-4365/ab289b
|
[12] |
The SunPy Community, MUMFORD S J, CHRISTE S, et al. SunPy-python for solar physics[J]. Computational Science & Discovery, 2015, 8(1): 014009 doi: 10.1088/1749-4699/8/1/014009
|
[13] |
叶茜, 宋乔, 薛炳森. 基于活动区面积统计的F10.7指数预报方法[J]. 空间科学学报, 2019, 39(5): 582-590 doi: 10.11728/cjss2019.05.582
YE Qian, SONG Qiao, XUE Bingsen. F10.7 index forecasting method based on area statistics of solar active regions[J]. Chinese Journal of Space Science, 2019, 39(5): 582-590 doi: 10.11728/cjss2019.05.582
|
[14] |
朱凌锋. 多尺度日面信息的生成式度量模型空间天气预报[D]. 北京: 中国科学院大学, 2021
ZHU Lingfeng. Generative Model Space Weather Forecasting with Multi-Scale Solar Information[D]. Beijing: University of Chinese Academy of Sciences, 2021
|
[15] |
LI H Y, DONG W M, MEI X, et al. LGM-Net: Learning to generate matching networks for few-shot learning[C]//Proceedings of the 36 th International Conference on Machine Learning. Long Beach, USA: ICML, 2019: 3825-3834
|
[16] |
BLOOMFIELD D S, HIGGINS P A, MCATEER R T J, et al. Toward reliable benchmarking of solar flare forecasting methods[J]. The Astrophysical Journal Letters, 2012, 747(2): L41 doi: 10.1088/2041-8205/747/2/L41
|