Volume 43 Issue 1
Jan.  2023
Turn off MathJax
Article Contents
ZHANG Haicheng, QUAN Ronghui, ZHANG Chengyue. Inversion Analysis of GEO Plasma Environmental Parameters Based on BP Neural Network (in Chinese). Chinese Journal of Space Science, 2023, 43(1): 78-86 doi: 10.11728/cjss2023.01.220311028
Citation: ZHANG Haicheng, QUAN Ronghui, ZHANG Chengyue. Inversion Analysis of GEO Plasma Environmental Parameters Based on BP Neural Network (in Chinese). Chinese Journal of Space Science, 2023, 43(1): 78-86 doi: 10.11728/cjss2023.01.220311028

Inversion Analysis of GEO Plasma Environmental Parameters Based on BP Neural Network

doi: 10.11728/cjss2023.01.220311028 cstr: 32142.14.cjss2023.01.220311028
  • Received Date: 2022-03-11
  • Rev Recd Date: 2022-10-11
  • Available Online: 2023-02-09
  • The surface charging effect induced by the space plasma environment may interfere with the operation of spacecraft, which can lead to the failure of solar cells and other components. It is shown that the high-energy plasma environmental parameters can also be obtained by taking the electrical potential curve of the dielectric surface in the GEO environment as input under the assumption of double Maxwell distribution. Firstly, the influence of GEO plasma environment parameters on the surface charging potential curve is analyzed, indicating that the high energy peak plays a decisive role in the charging process. Then, BP neural network is established by MATLAB, and the network training data is obtained according to multiple groups of charging curves calculated by COMSOL. Finally, the average relative error of plasma density and temperature inversion is 0.42% and 0.03%, and respectively, and the overall relative error is within 0.1%~5.6%. Results showed that it was feasible to use a neural network to invert the plasma environment, and the method can be used as a reference for comparison of the detection results of the space plasma environment. The inversion results can be used as the input conditions for surface potential calculation of non-detection points of spacecraft.

     

  • loading
  • [1]
    刘尚合, 胡小锋, 原青云, 等. 航天器充放电效应与防护研究进展[J]. 高电压技术, 2019, 45(7): 2108-2118 doi: 10.13336/j.1003-6520.hve.20190628007

    LIU Shanghe, HU Xiaofeng, YUAN Qingyun, et al. Research progress in charging-discharging effects and protection of spacecraft[J]. High Voltage Engineering, 2019, 45(7): 2108-2118 doi: 10.13336/j.1003-6520.hve.20190628007
    [2]
    LAI S T, MARTINEZ-SANCHEZ M, CAHOY K, et al. Does spacecraft potential depend on the ambient electron density[J]. IEEE Transactions on Plasma Science, 2017, 45(10): 2875-2884 doi: 10.1109/TPS.2017.2751002
    [3]
    NAKAMURA M, NAKAMURA S, KAWACHI R, et al. Assessment of worst GEO plasma environmental models for spacecraft surface charging by SPIS[J]. Transactions of the Japan Society for Aeronautical and Space Sciences, Aerospace Technology Japan, 2018, 16(6): 556-560 doi: 10.2322/tastj.16.556
    [4]
    方庆园, 周江波, 季启政, 等. 基于等离子体能量密度的航天器表面电位估计[J]. 微波学报, 2020, 36(5): 36-40 doi: 10.14183/j.cnki.1005-6122.202005007

    FANG Qingyuan, ZHOU Jiangbo, JI Qizheng, et al. Evaluation of spacecraft surface potential based on plasma’s energy density[J]. Journal of Microwaves, 2020, 36(5): 36-40 doi: 10.14183/j.cnki.1005-6122.202005007
    [5]
    方庆园, 王通, 季启政, 等. 基于平均二次电子发射系数的航天器表面起电特征分析[J]. 强激光与粒子束, 2021, 33(2): 023007 doi: 10.11884/HPLPB202133.200149

    FANG Qingyuan, WANG Tong, JI Qizheng, et al. Analysis of spacecraft charging onset using secondary electron yield[J]. High Power Laser and Particle Beams, 2021, 33(2): 023007 doi: 10.11884/HPLPB202133.200149
    [6]
    崔阳, 杨勇, 张晓峰, 等. SMILE卫星表面电位特性分析[J]. 真空科学与技术学报, 2021, 41(1): 22-28 doi: 10.13922/j.cnki.cjvst.202005017

    CUI Yang, YANG Yong, ZHANG Xiaofeng, et al. Analysis of surface potential characteristics for SMILE satellite[J]. Chinese Journal of Vacuum Science and Technology, 2021, 41(1): 22-28 doi: 10.13922/j.cnki.cjvst.202005017
    [7]
    关燚炳, 王世金, 梁金宝, 等. 航天器交汇对接电位控制研究与航天器电位监测[J]. 科技导报, 2011, 29(29): 27-31 doi: 10.3981/j.issn.1000-7857.2011.29.002

    GUAN Yibing, WANG Shijin, LIANG Jinbao, et al. Spacecraft potential control and potential monitor during spacecraft docking[J]. Science and Technology Review, 2011, 29(29): 27-31 doi: 10.3981/j.issn.1000-7857.2011.29.002
    [8]
    田立成, 石红, 李娟, 等. 航天器表面充电仿真计算和电位主动控制技术[J]. 航天器环境工程, 2012, 29(2): 144-149 doi: 10.3969/j.issn.1673-1379.2012.02.006

    TIAN Licheng, SHI Hong, LI Juan, et al. Simulation of spacecraft surface charging and active control of spacecraft surface potential[J]. Spacecraft Environment Engineering, 2012, 29(2): 144-149 doi: 10.3969/j.issn.1673-1379.2012.02.006
    [9]
    左应红, 王建国, 罗旭东, 等. 双麦克斯韦分布等离子体对航天器表面的充电效应[J]. 强激光与粒子束, 2015, 27(11): 114003 doi: 10.11884/HPLPB201527.114003

    ZUO Yinghong, WANG Jianguo, LUO Xudong, et al. Spacecraft surface charging effect of plasma in bi-Maxwellian distribution[J]. High Power Laser and Particle Beams, 2015, 27(11): 114003 doi: 10.11884/HPLPB201527.114003
    [10]
    武明志. 空间等离子体诱发太阳能电池表面充放电效应的仿真分析[D]. 南京: 南京航空航天大学, 2018

    WU Mingzhi. Analysis and Simulation of Surface Charging and Discharging on Solar Array[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018
    [11]
    ISO. ISO 19923: 2017 Space environment (natural and artificial)—plasma environments for generation of worst case electrical potential differences for spacecraft[S]. ISO, London, 2017
    [12]
    马晓敏, 王新. 基于遗传算法的BP神经网络改进[J]. 云南大学学报(自然科学版), 2013, 35(S2): 34-38

    MA Xiaomin, WANG Xin. An improved BP neural network algorithm based on genetic algorithm[J]. Journal of Yunnan University, 2013, 35(S2): 34-38
    [13]
    刘建林. BP神经网络模型在电磁环境预测中的应用[J]. 电力科技与环保, 2017, 33(4): 5-9 doi: 10.3969/j.issn.1674-8069.2017.04.002

    LIU Jianlin. Application of BP neural network prediction model to the electromagnetic fields[J]. Electric Power Environmental Protection, 2017, 33(4): 5-9 doi: 10.3969/j.issn.1674-8069.2017.04.002
    [14]
    刘天, 姚梦雷, 黄继贵, 等. BP神经网络在传染病时间序列预测中的应用及其MATLAB实现[J]. 预防医学情报杂志, 2019, 35(8): 812-816,821

    LIU Tian, YAO Menglei, HUANG Jigui, et al. Application of back propagation neural network in prediction of infectious disease time series and its MATLAB implementation[J]. Journal of Preventive Medicine Information, 2019, 35(8): 812-816,821
    [15]
    任谢楠. 基于遗传算法的BP神经网络的优化研究及MATLAB仿真[D]. 天津: 天津师范大学, 2014

    REN Xienan. Study on Optimization of BP Neural Network Based on Genetic Algorithm and MATLAB Simulation[D]. Tianjin: Tianjin Normal University, 2014
    [16]
    GUSSENHOVEN M S, MULLEN E G. Geosynchronous environment for severe spacecraft charging[J]. Journal of Spacecraft and Rockets, 1983, 20(1): 26-34 doi: 10.2514/3.28353
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(7)

    Article Metrics

    Article Views(391) PDF Downloads(44) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return