| Citation: | MA Sen, MA Jiahui, TONG Jizhou, LI Yunlong. Analysis of Global Geomagnetic Main Field Model Order Based on Bayesian Evidence (in Chinese). Chinese Journal of Space Science, 2023, 43(4): 600-608 doi: 10.11728/cjss2023.04.2022-0009 |
| [1] |
徐文耀. 地球电磁现象物理学[M]. 合肥: 中国科学技术大学出版社, 2009: 87-157
XU Wenyao. Physics of Electromagnetic Phenomena of the Earth[M]. Hefei: University of Science and Technology of China Press, 2009: 87-157
|
| [2] |
ALKEN P, THÉBAULT E, BEGGAN C D, et al. International geomagnetic reference field: the thirteenth generation[J]. Earth, Planets and Space, 2021, 73(1): 1-25 doi: 10.1186/s40623-020-01288-x
|
| [3] |
YANG Y, HULOT G, VIGNERON P, et al. The CSES global geomagnetic field model (CGGM): an IGRF-type global geomagnetic field model based on data from the China seismo-electromagnetic satellite[J]. Earth, Planets and Space, 2021, 73(1): 1-21 doi: 10.1186/s40623-020-01323-x
|
| [4] |
HUDER L, GILLET N, FINLAY C C, et al. COV-OBS. x2: 180 years of geomagnetic field evolution from ground-based and satellite observations[J]. Earth, Planets and Space, 2020, 72(1): 1-18 doi: 10.1186/s40623-019-1127-2
|
| [5] |
FINLAY C C, KLOSS C, OLSEN N, et al. The CHAOS-7 geomagnetic field model and observed changes in the south Atlantic anomaly[J]. Earth, Planets and Space, 2020, 72(1): 1-31 doi: 10.1186/S40623-020-01252-9
|
| [6] |
SABAKA T J, OLSEN N, TYLER R H, et al. CM5, a pre-Swarm comprehensive geomagnetic field model derived from over 12 yr of CHAMP, Ørsted, SAC-C and observatory data[J]. Geophysical Journal International, 2015, 200(3): 1596-1626 doi: 10.1093/gji/ggu493
|
| [7] |
LI S Y, LI Y L, ZHANG T J, et al. Model-independent determination of cosmic curvature based on the Padé approximation[J]. The Astrophysical Journal, 2019, 887(1): 36 doi: 10.3847/1538-4357/ab5225
|
| [8] |
BURNHAM K P, ANDERSON D R. Multimodel inference: understanding AIC and BIC in model selection[J]. Sociological Methods & Research, 2004, 33(2): 261-304
|
| [9] |
BELTRÁN M, GARCIA-BELLIDO J, LESGOURGUES J, et al. Bayesian model selection and isocurvature perturbations[J]. Physical Review D, 2005, 71(6): 063532 doi: 10.1103/PhysRevD.71.063532
|
| [10] |
TROTTA R. Applications of Bayesian model selection to cosmological parameters[J]. Monthly Notices of the Royal Astronomical Society, 2007, 378(1): 72-82 doi: 10.1111/j.1365-2966.2007.11738.x
|
| [11] |
ARREGUI I, RAMOS A A, DÍAZ A J. Bayesian analysis of multiple harmonic oscillations in the solar corona[J]. The Astrophysical Journal Letters, 2013, 765(1): L23 doi: 10.1088/2041-8205/765/1/L23
|
| [12] |
BRIDGES M, LASENBY A N, HOBSON M P. A Bayesian analysis of the primordial power spectrum[J]. Monthly Notices of the Royal Astronomical Society, 2006, 369(3): 1123-1130 doi: 10.1111/j.1365-2966.2006.10351.x
|
| [13] |
BALBI A, BRUNI M, QUERCELLINI C. ΛαDM: observational constraints on unified dark matter with constant speed of sound[J]. Physical Review D, 2007, 76(10): 103519 doi: 10.1103/PhysRevD.76.103519
|
| [14] |
NESSERIS S, GARCIA-BELLIDO J. Is the Jeffreys’ scale a reliable tool for Bayesian model comparison in cosmology[J]. Journal of Cosmology and Astroparticle Physics, 2013, 2013(8): 036 doi: 10.1088/1475-7516/2013/08/036
|
| [15] |
胡传鹏, 孔祥祯, WAGENMAKERS E J, 等. 贝叶斯因子及其在JASP中的实现[J]. 心理科学进展, 2018, 26(6): 951-965 doi: 10.3724/SP.J.1042.2018.00951
HU Chuanpeng, KONG Xiangzhen, WAGENMAKERS E J, et al. The Bayes factor and its implementation in JASP: a practical primer[J]. Advances in Psychological Science, 2018, 26(6): 951-965 doi: 10.3724/SP.J.1042.2018.00951
|
| [16] |
MACKAY D J C. A practical Bayesian framework for backpropagation networks[J]. Neural Computation, 1992, 4(3): 448-472 doi: 10.1162/neco.1992.4.3.448
|
| [17] |
MACKAY D J C. Information-based objective functions for active data selection[J]. Neural Computation, 1992, 4(4): 590-604 doi: 10.1162/neco.1992.4.4.590
|
| [18] |
徐文耀, 区加明, 杜爱民. 地磁场全球建模和局域建模[J]. 地球物理学进展, 2011, 26(2): 398-415 doi: 10.3969/j.issn.1004-2903.2011.02.002
XU Wenyao, OU Jiaming, DU Aimin. Geomagnetic field modelling for the globe and a limited region[J]. Progress in Geophysics, 2011, 26(2): 398-415 doi: 10.3969/j.issn.1004-2903.2011.02.002
|
| [19] |
SKILLING J. Nested sampling[J]. AIP Conference Proceedings, 2004, 735(1): 395-405
|
| [20] |
FEROZ F, HOBSON M P, BRIDGES M. MULTINEST: an efficient and robust Bayesian inference tool for cosmology and particle physics[J]. Monthly Notices of the Royal Astronomical Society, 2009, 398(4): 1601-1614 doi: 10.1111/j.1365-2966.2009.14548.x
|
| [21] |
BUCHNER J. Collaborative nested sampling: Big data versus complex physical models[J]. Publications of the Astronomical Society of the Pacific, 2019, 131(1004): 108005 doi: 10.1088/1538-3873/aae7fc
|
| [22] |
BUCHNER J. Nested sampling methods[OL]. arXiv preprint arXiv: 2101.09675, 2021
|
| [23] |
KASS R E, RAFTERY A E. Bayes factors[J]. Journal of the American Statistical Association, 1995, 90(430): 773-795 doi: 10.1080/01621459.1995.10476572
|
| [24] |
JEFFREYS H. The Theory of Probability[M]. 3 rd ed. Oxford: Oxford University Oxford, 1998
|