Volume 43 Issue 6
Dec.  2023
Turn off MathJax
Article Contents
CUI Yuxiang, HUSI Letu, LI Tongwen, JI Dabin, ZHANG Hao, SHI Jiancheng. Spatio-temporal Changes in Surface Net Radiation in the Qinghai-Tibet Plateau from 2000 to 2021 (in Chinese). Chinese Journal of Space Science, 2023, 43(6): 1150-1159 doi: 10.11728/cjss2023.06.2023-0080
Citation: CUI Yuxiang, HUSI Letu, LI Tongwen, JI Dabin, ZHANG Hao, SHI Jiancheng. Spatio-temporal Changes in Surface Net Radiation in the Qinghai-Tibet Plateau from 2000 to 2021 (in Chinese). Chinese Journal of Space Science, 2023, 43(6): 1150-1159 doi: 10.11728/cjss2023.06.2023-0080

Spatio-temporal Changes in Surface Net Radiation in the Qinghai-Tibet Plateau from 2000 to 2021

doi: 10.11728/cjss2023.06.2023-0080 cstr: 32142.14.cjss2023.06.2023-0080
  • Received Date: 2023-08-03
  • Rev Recd Date: 2023-11-01
  • Available Online: 2023-12-07
  • Based on the SYN1 deg-Level 3 radiation product from the CERES satellite spanning from March 2000 to February 2022, The Theil-Sen Median trend analysis, Mann-Kendall test, and EOF analysis were combined to investigate the spatiotemporal patterns of surface net radiation on the Qinghai-Tibet Plateau over the past 22 years. The study found that in terms of spatial distribution characteristics, the surface net radiation in the Qinghai-Tibet Plateau exhibits a general pattern of higher values in the southern region and lower values in the northern region. The variation trend of surface net radiation shows a high degree of consistency, but the fluctuation amplitude of it in the southern region of the Qinghai-Tibet Plateau is much higher than that in the northern region of the Qinghai-Tibet Plateau. Regarding to the temporal evolution, the surface net radiation displayed quasi-sinusoidal oscillations with a noticeable annual periodicity. Notably, there was a sudden decrease of approximately 5.52 W·m–2 in the period from 2016 to 2017. Concurrently, there was an increase of about 18.75% in the cloud area fraction during the same period.

     

  • loading
  • [1]
    高扬子, 何洪林, 张黎, 等. 近50年中国地表净辐射的时空变化特征分析[J]. 地球信息科学学报, 2013, 15(1): 1-10 doi: 10.3724/SP.J.1047.2013.00001

    GAO Yangzi, HE Honglin, ZHANG Li, et al. Spatio-temporal variation characteristics of surface net radiation in China over the past 50 years[J]. Journal of Geo-Information Science, 2013, 15(1): 1-10 doi: 10.3724/SP.J.1047.2013.00001
    [2]
    LETU H, NAKAJIMA T Y, WANG T X, et al. A new benchmark for surface radiation products over the East Asia-Pacific region retrieved from the Himawari-8/AHI next-generation geostationary satellite[J]. Bulletin of the American Meteorological Society, 2022, 103(3): E873-E888 doi: 10.1175/BAMS-D-20-0148.1
    [3]
    LIANG S L, WANG D D, HE T, et al. Remote sensing of earth's energy budget: synthesis and review[J]. International Journal of Digital Earth, 2019, 12(7): 737-780 doi: 10.1080/17538947.2019.1597189
    [4]
    TANG W B, XUE D J, LONG Z Y, et al. Near-real-time estimation of 1-km all-weather land surface temperature by integrating satellite passive microwave and thermal infrared observations[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 7001305
    [5]
    LIANG H, JIANG B, LIANG S L, et al. A global long-term ocean surface daily/0.05° net radiation product from 1983–2020[J]. Scientific Data, 2022, 9(1): 337 doi: 10.1038/s41597-022-01419-x
    [6]
    谷星月, 马耀明, 马伟强, 等. 青藏高原地表辐射通量的气候特征分析[J]. 高原气象, 2018, 37(6): 1458-1469

    GU Xingyue, MA Yaoming, MA Weiqiang, et al. Climatic characteristics of surface radiation flux over the Qinghai-Tibetan Plateau[J]. Plateau Meteorology, 2018, 37(6): 1458-1469
    [7]
    CHEN L, YAN G J, WANG T X, et al. Estimation of surface shortwave radiation components under all sky conditions: modeling and sensitivity analysis[J]. Remote Sensing of Environment, 2012, 123: 457-469 doi: 10.1016/j.rse.2012.04.006
    [8]
    KANG S C, XU Y W, YOU Q L, et al. Review of climate and cryospheric change in the Tibetan Plateau[J]. Environmental Research Letters, 2010, 5(1): 015101 doi: 10.1088/1748-9326/5/1/015101
    [9]
    张明礼, 王斌, 王得楷, 等. 降雨对青藏高原多年冻土区地表辐射的影响——以北麓河地区为例[J]. 冰川冻土, 2021, 43(4): 1092-1101

    ZHANG Mingli, WANG Bin, WANG Dekai, et al. The effects of rainfall on the surface radiation of permafrost regions in Qinghai-Tibet Plateau: a case study in Beiluhe area[J]. Journal of Glaciology and Geocryology, 2021, 43(4): 1092-1101
    [10]
    蔡鸿泽, 王开存. 基于最新观测和大气再分析估计全球能量平衡[J]. 科学通报, 2022, 67(35): 4263-4280 doi: 10.1360/TB-2022-0089

    CAI Hongze, WANG Kaicun. Updating global energy balance based on the latest observations and reanalyses[J]. Chinese Science Bulletin, 2022, 67(35): 4263-4280 doi: 10.1360/TB-2022-0089
    [11]
    LIN C G, WU H P, OU T H, et al. A new perspective on solar dimming over the Tibetan Plateau[J]. International Journal of Climatology, 2019, 39(1): 302-316 doi: 10.1002/joc.5807
    [12]
    WILD M, GILGEN H, ROESCH A, et al. From dimming to brightening: decadal changes in solar radiation at Earth's surface[J]. Science, 2005, 308(5723): 847-850 doi: 10.1126/science.1103215
    [13]
    张艳武, 冯起, 黄静, 等. 黑河下游绿洲地表辐射平衡及小气候特征分析[J]. 冰川冻土, 2012, 28(2): 191-198

    ZHANG Yanwu, FENG Qi, HUANG Jing, et al. Ground energy balance and microclimate characteristics in the oasis of lower reaches of Heihe River[J]. Journal of Glaciology and Geocryology, 2012, 28(2): 191-198
    [14]
    次仁尼玛, 单增罗布, 宣越健, 等. 青藏高原羊八井地区地表辐射的季节变化特征[J]. 高原气象, 2013, 32(5): 1253-1260

    CIREN Nima, DANZENG Luobu, XUAN Yuejian, et al. Characteristic of seasonal variation of surface radiation balance at Yangbajing in Qinghai-Xizang Plateau[J]. Plateau Meteorology, 2013, 32(5): 1253-1260
    [15]
    李平, 王鸽, 王顺久. 阿里地区狮泉河近30年总辐射和净辐射的变化特征[J]. 高原山地气象研究, 2022, 42(4): 110-114

    LI Ping, WANG Ge, WANG Shunjiu. Variation characteristics of total radiation and net radiation in Ali area in recent 30 years[J]. Plateau and Mountain Meteorology Research, 2022, 42(4): 110-114
    [16]
    赵文娜, 次仁尼玛, 王一楠, 等. 西藏羊八井地区地表辐射的时间变化特征研究[J]. 高原科学研究, 2022, 6(4): 42-49

    ZHAO Wenna, TSERING-NYIMA, WANG Yinan, et al. Study on the temporal variation of surface radiation at Yangbajing on the Qinghai-Tibet Plateau[J]. Plateau Science Research, 2022, 6(4): 42-49
    [17]
    马茜蓉, 游庆龙, 蔡淼, 等. 基于CERES卫星资料分析中国近15 a云量变化[J]. 干旱气象, 2018, 36(6): 911-920

    MA Qianrong, YOU Qinglong, CAI Miao, et al. The cloud variation over China in recent 15 years based on CERES satellite data[J]. Journal of Arid Meteorology, 2018, 36(6): 911-920
    [18]
    ZHANG X T, LIANG S L, ZHOU G Q, et al. Generating Global Land Surface Satellite incident shortwave radiation and photosynthetically active radiation products from multiple satellite data[J]. Remote Sensing of Environment, 2014, 152: 318-332 doi: 10.1016/j.rse.2014.07.003
    [19]
    苏红军, 许仲林. 2000—2015年新疆植被指数的时空动态分析[J]. 湖北农业科学, 2022, 61(10): 48-55,63 doi: 10.14088/j.cnki.issn0439-8114.2022.10.008

    SU Hongjun, XU Zhonglin. Temporal and spatial dynamics analysis of vegetation index in Xinjiang from 2000 to 2015[J]. Hubei Agricultural Sciences, 2022, 61(10): 48-55,63 doi: 10.14088/j.cnki.issn0439-8114.2022.10.008
    [20]
    周蕊, 高钰婷, 石丽荣, 等. 近22年民勤地区植被变化的时空特征及其驱动因素[J]. 安徽农业科学, 2023, 51(2): 68-74

    ZHOU Rui, GAO Yuting, SHI Lirong, et al. Temporal and spatial characteristics of vegetation change and its driving factors in Minqin region in recent 22 years[J]. Journal of Anhui Agricultural Sciences, 2023, 51(2): 68-74
    [21]
    BAMBANG I, SARAVANAN S, REDDY N M, et al. An investigation of the changing patterns of rainfall in the Indravathi subbasin utilizing the Mann-Kendall and Sen’s slope methods[J]. IOP Conference Series: Earth and Environmental Science, 2023, 1173(1): 012036 doi: 10.1088/1755-1315/1173/1/012036
    [22]
    GAO H, JIN J X. Analysis of water yield changes from 1981 to 2018 using an improved Mann-Kendall test[J]. Remote Sensing, 2022, 14(9): 2009 doi: 10.3390/rs14092009
    [23]
    MERINO A, SÁNCHEZ J L, GARCÍA-ORTEGA S, et al. Hailfalls in southwest Europe: EOF analysis for identifying synoptic pattern and their trends[J]. Atmospheric Research, 2019, 215: 42-56 doi: 10.1016/j.atmosres.2018.08.006
    [24]
    TIAN X M, TANG C L, WU X, et al. The global spatial-temporal distribution and EOF analysis of AOD based on MODIS data during 2003–2021[J]. Atmospheric Environment, 2023, 302: 119722 doi: 10.1016/j.atmosenv.2023.119722
    [25]
    SUN M D, KIM G, LEI K, et al. Evaluation of technology for the analysis and forecasting of precipitation using cyclostationary EOF and regression method[J]. Atmosphere, 2022, 13(3): 500 doi: 10.3390/atmos13030500
    [26]
    翁笃鸣. 青藏高原地表净辐射若干重要特征研究[J]. 南京气象学院学报, 1991, 14(2): 151-159

    WENG Duming. Some major features of surface net radiation in the Qinghai-Xizang Plateau[J]. Journal of Nanjing Institute of Meteorology, 1991, 14(2): 151-159
    [27]
    马越界, 黄建平, 刘玉芝. 利用星载云雷达资料分析夏季青藏高原的云辐射强迫[J]. 兰州大学学报(自然科学版), 2011, 47(5): 48-54 doi: 10.13885/j.issn.0455-2059.2011.05.015

    MA Yuejie, HUANG Jianping, LIU Yuzhi. Impact of clouds on radiative fluxes in summer over the Tibetan Plateau from Cloudsat data[J]. Journal of Lanzhou University (Natural Sciences), 2011, 47(5): 48-54 doi: 10.13885/j.issn.0455-2059.2011.05.015
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(3)

    Article Metrics

    Article Views(1311) PDF Downloads(100) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return