Citation: | WANG Zhenzhan, WANG Wenyu, TONG Xiaolin, ZHANG Zhou, LIU Jingyi, LU Hao, DING Jia, WU Yanting. Progress in Spaceborne Passive Microwave Remote Sensing Technology and Its Application (in Chinese). Chinese Journal of Space Science, 2023, 43(6): 986-1015 doi: 10.11728/cjss2023.06.yg15 |
[1] |
ULABY F T, LONG D G. Microwave Radar and Radiometric Remote Sensing[M]. Ann Arbor: University of Michigan Press, 2014
|
[2] |
URBAN J, BARON P, LAUTIÉ N, et al. MOLIERE (v5): a versatile forward- and inversion model for the millimeter and sub-millimeter wavelength range[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2004, 83(3/4): 529-554
|
[3] |
JAXA. ADEOS-II Data Users Handbook [M]. 3rd ed., 2006. https://www.eorc.jaxa.jp/AMSR/eorc/en/hatoyama/adeos2/adeos2_handbook_e.pdf
|
[4] |
王振占, 张德海, 赵谨, 等. HY-2A卫星大气校正微波辐射计在轨数据定标和检验研究[J]. 中国工程科学, 2013, 15(7): 44-52,61 doi: 10.3969/j.issn.1009-1742.2013.07.007
WANG Zhenzhan, ZHANG Dehai, ZHAO Jin, et al. In-orbit calibration and validation of atmospheric correction microwave radiometer on HY-2A satellite[J]. Strategic Study of CAE, 2013, 15(7): 44-52,61 doi: 10.3969/j.issn.1009-1742.2013.07.007
|
[5] |
BERGER M, CAMPS A, FONT J, et al. Measuring ocean salinity with ESA’s SMOS mission – Advancing the science[J]. ESA Bulletin, 2002, 111: 113-121
|
[6] |
YIN X B, BOUTIN J, SPURGEON P. First assessment of SMOS data over open ocean: Part I – pacific ocean[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(5): 1648-1661 doi: 10.1109/TGRS.2012.2188407
|
[7] |
LAGERLOEF G, COLOMB F R, LE VINE D, et al. The Aquarius/SAC-D mission: designed to meet the salinity remote-sensing challenge[J]. Oceanography, 2008, 21(1): 68-81 doi: 10.5670/oceanog.2008.68
|
[8] |
GLOERSEN P, BARATH F. A scanning multichannel microwave radiometer for Nimbus-G and SeaSat-A[J]. IEEE Journal of Oceanic Engineering, 1977, 2(2): 172-178 doi: 10.1109/JOE.1977.1145331
|
[9] |
WILHEIT T T, CHANG A T C. An algorithm for retrieval of ocean surface and atmospheric parameters from the observations of the scanning multichannel microwave radiometer[J]. Radio Science, 1980, 15(3): 525-544 doi: 10.1029/RS015i003p00525
|
[10] |
MO T, GOLDBERG M D, CROSBY D S, et al. Recalibration of the NOAA microwave sounding unit[J]. Journal of Geophysical Research:Atmospheres, 2001, 106(D10): 10145-10150 doi: 10.1029/2001JD900027
|
[11] |
MO T. Prelaunch calibration of the advanced microwave sounding unit-A for NOAA-K[J]. IEEE Transactions on Microwave Theory and Techniques, 1996, 44(8): 1460-1469 doi: 10.1109/22.536029
|
[12] |
MO T. AMSU-A antenna pattern corrections[J]. IEEE Transactions on Geoscience and Remote Sensing, 1999, 37(1): 103-112 doi: 10.1109/36.739131
|
[13] |
LAMBRIGTSEN B. AIRS Project Algorithm Theoretical Basis Document: Level 1b, Part 3: Microwave Instruments[R]. Pasadena: JET Propulsion Laboratory California Institute of Technology, 2000
|
[14] |
GOODRUM G, KATHERINE B. Kidwell and Wayne Winston[R]. NOAA KLM User’s Guide, 2000
|
[15] |
SAUNDERS R W, HEWISON T J, STRINGER S J, et al. The radiometric characterization of AMSU-B[J]. IEEE Transactions on Microwave Theory and Techniques, 1995, 43(4): 760-771 doi: 10.1109/22.375222
|
[16] |
OLSEN E T. AIRS/AMSU/HSB Version 4.0 Data Release User Guide, Version 1.1[R]. Pasadena: JET Propulsion Laboratory California Institute of Technology, 2005
|
[17] |
王振占, 李芸. 神舟四号飞船微波辐射计定标和检验(Ⅰ)——微波辐射计外定标[J]. 遥感学报, 2004, 8(5): 397-403
WANG Zhenzhan, LI Yun. Calibration and validation of microwave radiometer (RAD) on-aboard SZ-4 spacecraft: Part I RAD external calibration[J]. Journal of Remote Sensing, 2004, 8(5): 397-403
|
[18] |
谷松岩, 王振占, 马刚, 等. 气象卫星微波大气遥感[M]. 北京: 科学出版社, 2021
GU Songyan, WANG Zhenzhan, MA Gang, et al. Microwave Remote Sensing on Metrological Satellite[M]. Beijing: Science Press, 2021
|
[19] |
JIANG X W, LIN M S, LIU J Q, et al. The HY-2 satellite and its preliminary assessment[J]. International Journal of Digital Earth, 2012, 5(3): 266-281 doi: 10.1080/17538947.2012.658685
|
[20] |
林明森, 何贤强, 贾永君, 等. 中国海洋卫星遥感技术进展[J]. 海洋学报, 2019, 41(10): 99-112
LIN Mingsen, HE Xianqiang, JIA Yongjun, et al. Advances in marine satellite remote sensing technology in China[J]. Haiyang Xuebao, 2019, 41(10): 99-112
|
[21] |
张庆君. 面向碳综合治理的卫星海洋遥感体系展望[J]. 前瞻科技, 2022, 1(1): 126-145
ZHANG Qingjun. Prospect of satellite ocean remote sensing system for comprehensive carbon management[J]. Science and Technology Foresight, 2022, 1(1): 126-145
|
[22] |
OSCAR. Observing Systems Capability Analysis and Review Tool[OL]. [2023-09-18]. https://space.oscar.wmo.int/satellites
|
[23] |
WENG F Z, ZOU X L, SUN N H, et al. Calibration of Suomi national polar-orbiting partnership advanced technology microwave sounder[J]. Journal of Geophysical Research: Atmospheres, 2013, 118(19): 11187-111200
|
[24] |
WENG F Z, YANG H, ZOU X L. On convertibility from antenna to sensor brightness temperature for ATMS[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(4): 771-775 doi: 10.1109/LGRS.2012.2223193
|
[25] |
GHRC. Defense Meteorological Satellite Program (DMSP) Satellite F13 Source/Platform[OL]. [2023-09-18]. https://ghrc.nsstc.nasa.gov/uso/source_docs/dmsp_f13.html
|
[26] |
PAGANO T S, CHAHINE M T, AUMANN H H, et al. AIRS/AMSU/HSB on EOS Aqua: first-year post-launch assessment[C]//Proceedings of SPIE 5151, Earth Observing Systems VIII. San Diego: SPIE, 2003
|
[27] |
王振占, 徐曦煜, 李东, 等. 卫星微波遥感技术新进展. 《2019高技术发展报告》第三章“航天技术新进展”3.4节[M]. 北京: 科学出版社, 2019
WANG Zhenzhan, XU Xiyu, LI Dong, et al. New Progress on Satellite Microwave Remote Sensing. Section 3.4 New Progress in Space Technology, 2019 High-Tech Development Report[M]. Beijing: Science Press, 2019
|
[28] |
EUMETSAT and the National Oceanic and Atmospheric Administration (NOAA) of the United States today signed an agreement on their Joint Polar System (JPS), which will provide observations from two complementary polar orbits in the period from 2020 to 2040 [OL]. (2015-12-02)[2023-11-24]. https://www.eumetsat.int/eumetsat-and-noaa-sign-agreement-joint-polar-system
|
[29] |
KANGAS V, D'ADDIO S, BETTO M, et al. Metop second generation microwave sounding and microwave imaging missions[C]//Proceedings of the 2012 EUMETSAT Meteorological Satellite Conference. Sopot, Poland, 2012
|
[30] |
TENNANT G, SYKES G, BUCKLEY M, et al. Microwave sounder for MetOp-SG[C]//Proceedings of the Advanced RF Sensors and Remote Sensing Instruments & Ka-Band Earth Observation Radar Missions. Noordwijk, The Netherlands: ESA/ESTEC, 2014
|
[31] |
ZHANG C, LIU H, WU J, et al. Imaging analysis and first results of the geostationary interferometric microwave sounder demonstrator[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(1): 207-218 doi: 10.1109/TGRS.2014.2320983
|
[32] |
KUNKEE D B, POE G A, BOUCHER D J, et al. Design and evaluation of the first special sensor microwave imager/sounder[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(4): 863-883 doi: 10.1109/TGRS.2008.917980
|
[33] |
SUN N H, WENG F Z. Evaluation of special sensor microwave imager/sounder (SSMIS) environmental data records[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(4): 1006-1016 doi: 10.1109/TGRS.2008.917368
|
[34] |
KUMMEROW C, BARNES W, KOZU T, et al. The tropical rainfall measuring mission (TRMM) sensor package[J]. Journal of Atmospheric and Oceanic Technology, 1998, 15(3): 809-817 doi: 10.1175/1520-0426(1998)015<0809:TTRMMT>2.0.CO;2
|
[35] |
SMITH E, ASRAR G, FURUHAMA Y, et al. International Global Precipitation Measurement (GPM) program and mission: an overview[M]//LEVIZZANI V, BAUER P, TURK F J. Measuring Precipitation From Space. Dordrecht: Springer, 2007: 611-653
|
[36] |
MEISSNER T, FRANK W. GMI Calibration Algorithm and Analysis Theoretical Basis Document[R]//, 2010
|
[37] |
PICA G, ALBERTI G, MEMOLI A, et al. MetOp Second Generation: a joint ESA/EUMETSAT mission for weather forecast and climate monitoring with an imaging radiometer[C]//Proceedings of the 63rd IAC (International Astronautical Congress). Naples, Italy, 2012
|
[38] |
D’ADDIO S, KANGAS V, KLEIN U, et al. Microwave imager instrument for MetOp second generation[C]//Proceedings of the 13th Specialist Meeting on Microwave Radiometry and Remote Sensing of the Environment. Pasadena: IEEE, 2014
|
[39] |
CREWELL S, BÜHLER S, PRIGENT C. Potential of the Ice Cloud Imaging Instrument within the EUMETSAT Polar System–Second Generation[OL]. [2023-11-24]. https://www-cdn.eumetsat.int/files/2020-04/pdf_peps_ucw3_19.pdf
|
[40] |
SOLA R G, PUJADES M B, LABRIOLA M, et al. The Ice Cloud Imager for Metop-SG: the development challenge has started[C]//Proceedings of the Advanced RF Sensors and Remote Sensing Instruments & Ka-band Earth Observation Radar Missions. Noordwijk, The Netherlands, 2014
|
[41] |
WENTZ F J, MEISSNER T. AMSR Ocean Algorithm, Algorithm Theoretical Basis Document[R]. Greenbelt: National Aeronautics and Space Administration, 2000
|
[42] |
OVERVIEW OF THE GLOBAL CHANGE OBSERVATION MISSION (GCOM) [OL]. [2023-11-24]. https://earth.jaxa.jp/files/research/ra/1st_ra_eo/material/material_j.pdf
|
[43] |
蒋兴伟, 林明森, 张有广. 中国海洋卫星及应用进展[J]. 遥感学报, 2016, 20(5): 1185-1198
JIANG Xingwei, LIN Mingsen, ZHANG Youguang. Progress and prospect of Chinese ocean satellites[J]. Journal of Remote Sensing, 2016, 20(5): 1185-1198
|
[44] |
LIU H, ZHU D, NIU L J, et al. MICAP (Microwave imager combined active and passive): a new instrument for Chinese ocean salinity satellite[C]//Proceedings of 2015 IEEE International Geoscience and Remote Sensing Symposium. Milan: IEEE, 2015
|
[45] |
RUF C S, KEIHM S J, JANSSEN M A. TOPEX/Poseidon Microwave Radiometer (TMR). I. Instrument description and antenna temperature calibration[J]. IEEE Transactions on Geoscience and Remote Sensing, 1995, 33(1): 125-137 doi: 10.1109/36.368215
|
[46] |
BROWN S, RUF C, KEIHM S, et al. Preliminary validation and performance of the Jason microwave radiometer[C]//Proceedings of the IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings. Toulouse: IEEE, 2003
|
[47] |
BROWN S. Maintaining the long-term calibration of the jason-2/OSTM advanced microwave radiometer through intersatellite calibration[J]. IEEE Transactions on Geo science and Remote Sensing, 2013, 51(3): 1531-1543 doi: 10.1109/TGRS.2012.2213262
|
[48] |
FRERY M L, SIMÉON M, GOLDSTEIN C, et al. Sentinel-3 microwave radiometers: instrument description, calibration and geophysical products performances[J]. Remote Sensing, 2020, 12(16): 2590 doi: 10.3390/rs12162590
|
[49] |
KERR Y H, WALDTEUFEL P, WIGNERON J P, et al. The SMOS mission: new tool for monitoring key elements of the global water cycle[J]. Proceedings of the IEEE, 2010, 98(5): 666-687 doi: 10.1109/JPROC.2010.2043032
|
[50] |
GAISER P W, GERMAIN K M S, TWAROG E M, et al. The WindSat spaceborne polarimetric microwave radiometer: sensor description and early orbit performance[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(11): 2347-2361 doi: 10.1109/TGRS.2004.836867
|
[51] |
BROWN S, FOCARDI P, KITIYAKARA A, et al. The Compact Ocean Wind Vector Radiometer: A New Class of Low-cost Conically Scanning Satellite Microwave Radiometer System[OL]. https://ams.confex.com/ams/94Annual/webprogram/Manuscript/Paper241605/COWVR_2014_AMS_extended_abstract.pdf
|
[52] |
MAIWALD F, MONTES O, PADMANABHAN S, et al. RF and electronics design of the compact ocean wind vector radiometer[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13: 3816-3823 doi: 10.1109/JSTARS.2020.3005041
|
[53] |
NEWELL D, DRAPER D, REMUND Q, et al. Weather Satellite Follow-on-Microwave (WSF-M) Design and Predicted Performance[OL]. https://ams.confex.com/ams/2020Annual/webprogram/Manuscript/Paper369912/WSFM%20AMS%20Final.pdf
|
[54] |
VANIN F, LABERINTI P, DONLON C, et al. Copernicus imaging microwave radiometer (CIMR): system aspects and technological challenges[C]//Proceedings of the IGARSS 2020-2020 IEEE International Geoscience and Remote Sensing Symposium. Waikoloa: IEEE, 2020
|
[55] |
National Academies of Sciences, Engineering, and Medicine. Handbook of Frequency Allocations and Spectrum Protection for Scientific Uses[M]. 2nd ed. Washington, DC: The National Academies Press, 2015
|
[56] |
WENG F Z, YU X W, DUAN Y H, et al. Advanced radiative transfer modeling system (ARMS): a new-generation satellite observation operator developed for numerical weather prediction and remote sensing applications[J]. Advances in Atmospheric Sciences, 2020, 37(2): 131-136 doi: 10.1007/s00376-019-9170-2
|
[57] |
王雪影. 面向星载被动微波辐射计AMSR2 观测像元的自适应陆表发射率模型研究[D]. 北京: 中国科学院大学(中国科学院国家空间科学中心), 2023
WANG Xueying. Adaptive microwave land surface emissivity model for observation pixels of spaceborne passive microwave radiometer AMSR2[D]. Beijing: University of Chinese Academy of Sciences (National Space Science Center, the Chinese Academy of Sciences), 2023
|
[58] |
NOROUZI H, TEMIMI M, ROSSOW W B, et al. The sensitivity of land emissivity estimates from AMSR-E at C and X bands to surface properties[J]. Hydrology and Earth System Sciences, 2011, 15(11): 3577-3589 doi: 10.5194/hess-15-3577-2011
|
[59] |
PELLARIN T, WIGNERON J P, CALVET J C, et al. Two-year global simulation of L-band brightness temperatures over land[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(9): 2135-2139 doi: 10.1109/TGRS.2003.815417
|
[60] |
NJOKU E G, LI L. Retrieval of land surface parameters using passive microwave measurements at 6-18 GHz[J]. IEEE Transactions on Geoscience and Remote Sensing, 1999, 37(1): 79-93 doi: 10.1109/36.739125
|
[61] |
ITU. Recommendation ITU-R RS. 515-4 Frequency Bands and Bandwidths Used for Satellite Passive Sensing[R]. Geneva: ITU, 2011
|
[62] |
WU D L, YEE J H, SCHLECHT E, et al. THz limb sounder (TLS) for lower thermospheric wind, oxygen density, and temperature[J]. Journal of Geophysical Research:Space Physics, 2016, 121(7): 7301-7315 doi: 10.1002/2015JA022314
|
[63] |
JEZEK K C, JOHNSON J T, TAN S R, et al. 500–2000-MHz brightness temperature spectra of the northwestern Greenland ice sheet[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(3): 1485-1496 doi: 10.1109/TGRS.2017.2764381
|
[64] |
王文煜. 太赫兹大气临边探测辐射计应用仿真研究[D]. 北京: 中国科学院大学(中国科学院国家空间科学中心), 2020
WANG Wenyu. Simulation Study on Application for THZ Atmospheric Limb Sounder[D]. Beijing: National Space Science Center, Chinese Academy of Sciences, 2020
|
[65] |
BARATH F T, CHAVEZ M C, COFIELD R E, et al. The Upper Atmosphere Research Satellite microwave limb sounder instrument[J]. Journal of Geophysical Research: Atmospheres, 1993, 98(D6): 10751-10762 doi: 10.1029/93JD00798
|
[66] |
MURTAGH G, FRISK U, MERINO F, et al. An overview of the Odin atmospheric mission[J]. Canadian Journal of Physics, 2002, 80(4): 309-319 doi: 10.1139/p01-157
|
[67] |
SCHOEBERL M R, DOUGLASS A R, HILSENRATH E, et al. Overview of the EOS aura mission[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(5): 1066-1074 doi: 10.1109/TGRS.2005.861950
|
[68] |
KIKUCHI K I, NISHIBORI T, OCHIAI S, et al. Overview and early results of the Superconducting Submillimeter‐Wave Limb‐Emission Sounder (SMILES)[J]. Journal of Geophysical Research: Atmospheres, 2010, 115(D23): D23306
|
[69] |
FUJII Y, KIKUCHI K, INATANI J, et al. Spaceborne 640-GHz SIS receiver based on a 4-K mechanical cooler[C]//Proceedings of SPIE 4013, UV, Optical, and IR Space Telescopes and Instruments. Munich: SPIE, 2000
|
[70] |
MASUMICHI S, AXEL M, MANABE T, et al. Quasi–Optics for 640 GHz SIS Receiver of International–Space–Station–Borne Limb–Emission Sounder SMILES[C]//14th International Symposium on Space Terahertz Technology, 2003
|
[71] |
INATANI J, NARASAKI K, TSUNEMATSU S, et al. Mechanical cooler and cryostat for submillimeter SIS mixer receiver in space[C]//Proceedings of SPIE 4540, Sensors, Systems, and Next-Generation Satellites V. Toulouse: SPIE, 2001
|
[72] |
GERBER D, SWINYARD B, ELLISON B, et al. LOCUS: Low cost upper atmosphere sounder[C]//Sensors, Systems, and Next-Generation Satellites XVII, 2013
|
[73] |
王文煜. 太赫兹大气探测方法及应用研究, 博士后研究工作报告[D]. 北京: 中国科学院大学(中国科学院国家空间科学中心), 2023
WANG Wenyu. Study on Terahertz Atmospheric Measurement Methods and Applications[D]. Beijing: University of Chinese Academy of Sciences (National Space Science Center, the Chinese Academy of Sciences), 2023
|
[74] |
BARON P, MURTAGH D, ERIKSSON P, et al. Simulation study for the Stratospheric Inferred Winds (SIW) sub-millimeter limb sounder[J]. Atmospheric Measurement Techniques Discussions, 2018, 11(7): 4545-4566 doi: 10.5194/amt-11-4545-2018
|
[75] |
OCHIAI S, BARON P, NISHIBORI T, et al. SMILES-2 mission for temperature, wind, and composition in the whole atmosphere[J]. SOLA, 2017, 13A (Special_Edition): 13-18
|
[76] |
BARON P, OCHIAI S, DUPUY E, et al. Potential for the measurement of mesosphere and lower thermosphere (MLT) wind, temperature, density and geomagnetic field with Superconducting Submillimeter-Wave Limb-Emission Sounder 2 (SMILES-2)[J]. Atmospheric Measurement Techniques, 2020, 13(1): 219-237 doi: 10.5194/amt-13-219-2020
|
[77] |
WANG W Y, WANG Z Z, DUAN Y Q. Performance evaluation of THz atmospheric limb sounder (TALIS) of China[J]. Atmospheric Measurement Techniques, 2020, 13(1): 13-38 doi: 10.5194/amt-13-13-2020
|
[78] |
WANG W Y, WANG Z Z, DUAN Y Q. Preliminary evaluation of the error budgets in the TALIS measurements and their impact on the retrievals[J]. Remote Sensing, 2020, 12(3): 468 doi: 10.3390/rs12030468
|
[79] |
ENTEKHABI D, NJOKU E G, O’NEILL P E, et al. The soil moisture active passive (SMAP) mission[J]. Proceedings of the IEEE, 2010, 98(5): 704-716 doi: 10.1109/JPROC.2010.2043918
|
[80] |
DU Y, DONG X L, JIANG X W, et al. Ocean surface current multiscale observation mission (OSCOM): simultaneous measurement of ocean surface current, vector wind, and temperature[J]. Progress in Oceanography, 2021, 193: 102531 doi: 10.1016/j.pocean.2021.102531
|
[81] |
王振占, 孙艺玲, 王文煜, 等. 小卫星大气微波探测仪及其应用模拟研究[J]. 遥感技术与应用, 2022, 37(1): 8-16
WANG Zhenzhan, SUN Yiling, WANG Wenyu, et al. Simulation studies on the applications of small-satellite-based atmospheric microwave sounder (SAMS)[J]. Remote Sensing Technology and Application, 2022, 37(1): 8-16
|
[82] |
EARTHDATA. Data Processing Levels[OL]. [2023-09-26]. https://www.earthdata.nasa.gov/engage/open-data-services-and-software/data-information-policy/data-levels
|
[83] |
AMSR, AMSR-E. Data Products[OL]. [2023-09-26]. https://sharaku.eorc.jaxa.jp/AMSR/products/index.html
|
[84] |
SMITH C I, WENTZ F, MEISSNER T. Algorithm Theoretical Basis Document (ATBD) for the Conical-Scanning Microwave Imager/Sounder (CMIS) Environmental Data Records (EDRs) //Volume 17: Temperature Data Record and Sensor Data Record Algorithms, Version 2.0 – 15 March 2001[C]. Solicitation No. F04701-01-R-0500, AER Document P757-TR-I-ATBD-TDR-SDR-20010315
|
[85] |
WANG Z Z, LI J, ZHANG S W, et al. Prelaunch calibration of microwave humidity sounder on China’s FY-3A meteorological satellite[J]. IEEE Geoscience and Remote Sensing Letters, 2011, 8(1): 29-33 doi: 10.1109/LGRS.2010.2050676
|
[86] |
王振占, 李娇阳. 风云三号卫星微波探测仪定标原理及算法[J]. 遥感技术与应用, 2019, 34(6): 1197-1204
WANG Zhenzhan, LI Jiaoyang. Calibration principle and algorithm of microwave sounder onboard FengYun-3 satellites[J]. Remote Sensing Technology and Application, 2019, 34(6): 1197-1204
|
[87] |
王振占, 丁甲, 陆浩, 等. 机载全极化微波辐射计系统设计及海面亮温的提取方法[J]. 电子学报, 2023, 51(2): 275-285
WANG Zhenzhan, DING Jia, LU Hao, et al. Design of airborne full polarization microwave radiometer system and extraction method of sea surface brightness temperature[J]. Acta Electonica Sinica, 2023, 51(2): 275-285
|
[88] |
MODIS Level 1A Earth Location: Algorithm Theoretical Basis Document Version 3.0[OL]. (1997-08-26) [2023-11-24]. https://modis.gsfc.nasa.gov/data/atbd/atbd_mod28_v3.pdf
|
[89] |
BACKUS G, GILBERT F. Uniqueness in the inversion of inaccurate gross Earth data[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1970, 266 (1173): 123-192
|
[90] |
STOGRYN A. Estimates of brightness temperatures from scanning radiometer data[J]. IEEE Transactions on Antennas and Propagation, 1978, 26(5): 720-726 doi: 10.1109/TAP.1978.1141919
|
[91] |
POE G A. Optimum interpolation of imaging microwave radiometer data[J]. IEEE Transactions on Geoscience and Remote Sensing, 1990, 28(5): 800-810 doi: 10.1109/36.58966
|
[92] |
ASHCROFT P, WENTZ F J. Algorithm Theoretical Basis Document (ATBD) AMSR-E Level 2A Algorithm[R]. Greenbelt: National Aeronautics and Space Administration, 2000
|
[93] |
MAEDA T, TANIGUCHI Y, IMAOKA K. GCOM-W1 AMSR2 Level 1R product: dataset of brightness temperature modified using the antenna pattern matching technique[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(2): 770-782 doi: 10.1109/TGRS.2015.2465170
|
[94] |
FARRAR M R, SMITH E A. Spatial resolution enhancement of terrestrial features using deconvolved SSM/I microwave brightness temperatures[J]. IEEE Transactions on Geoscience and Remote Sensing, 1992, 30(2): 349-355 doi: 10.1109/36.134084
|
[95] |
HU T, ZHANG F, LI W, et al. Microwave radiometer data superresolution using image degradation and residual network[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(11): 8954-8967 doi: 10.1109/TGRS.2019.2923886
|
[96] |
SABAGHY S, WALKER J P, RENZULLO L J, et al. Spatially enhanced passive microwave derived soil moisture: capabilities and opportunities[J]. Remote Sensing of Environment, 2018, 209: 551-580 doi: 10.1016/j.rse.2018.02.065
|
[97] |
ZHANG Z, WANG Z Z, HE W M, et al. Analysis of the effect of enhanced FOV and sampling strategy on the spatial resolution enhancement of spaceborne microwave radiometer[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2023, 16: 8249-8261 doi: 10.1109/JSTARS.2023.3308038
|
[98] |
谷松岩, 王振占, 李靖, 等. FY-3A/MWHS在轨辐射定标及结果分析[J]. 中国工程科学, 2013, 15(7): 92-100 doi: 10.3969/j.issn.1009-1742.2013.07.014
GU Songyan, WANG Zhenzhan, LI Jing, et al. FY-3A/MWHS data calibration and validation analysis[J]. Strategic Study of CAE, 2013, 15(7): 92-100 doi: 10.3969/j.issn.1009-1742.2013.07.014
|
[99] |
谷松岩, 郭杨, 窦芳丽, 等. 风云三号微波大气探测载荷辐射定标[J]. 遥感技术与应用, 2021, 36(1): 141-154
GU Songyan, GUO Yang, DOU Fangli, et al. Radiometric calibration technology of microwave atmospheric sounders of FY-3 satellites[J]. Remote Sensing Technology and Application, 2021, 36(1): 141-154
|
[100] |
谷松岩, 郭杨, 谢鑫新, 等. 风云三号卫星微波载荷历史数据再定标[J]. 遥感学报, 2023, 27(10): 2252-2269
GU Songyan, GUO Yang, XIE Xinxin, et al. Recalibration of the FY-3 microwave payload historical data records[J]. National Remote Sensing Bulletin, 2023, 27(10): 2252-2269
|
[101] |
王振占, 肖雨伟, 张升伟, 等. FY-3E微波湿度计发射前定标的非线性系数在星上定标中的适用性分析[J]. 遥感学报, 2023, 27(10): 2327-2336
WANG Zhenzhan, XIAO Yuwei, ZHANG Shengwei, et al. Analysis on applicability of nonlinearity coefficients derived from prelaunch calibration tests to onboard calibration of Microwave Humidity Sounder (MWHS-Ⅲ) on FY-3E satellite[J]. National Remote Sensing Bulletin, 2023, 27(10): 2327-2336
|
[102] |
李娇阳, 王振占, 谷松岩, 等. 星载微波大气湿度探测仪再定标共性技术分析[J]. 遥感技术与应用, 2019, 34(6): 1212-1220
LI Jiaoyang, WANG Zhenzhan, GU Songyan, et al. Common re-calibration technology for spaceborne microwave atmospheric humidity sounder[J]. Remote Sensing Technology and Application, 2019, 34(6): 1212-1220
|
[103] |
ISO/TS 19159-4: 2022 Geographic information — Calibration and validation of remote sensing imagery sensors and data — Part 4: space-borne passive microwave radiometers[S]. 2022
|