Volume 43 Issue 6
Dec.  2023
Turn off MathJax
Article Contents
HE Jieying, DONG Xiaolong, LU Naimeng. Perspectives of Transmission and Traceability of Space Microwave Radiometric Benchmark (in Chinese). Chinese Journal of Space Science, 2023, 43(6): 1016-1024 doi: 10.11728/cjss2023.06.yg17
Citation: HE Jieying, DONG Xiaolong, LU Naimeng. Perspectives of Transmission and Traceability of Space Microwave Radiometric Benchmark (in Chinese). Chinese Journal of Space Science, 2023, 43(6): 1016-1024 doi: 10.11728/cjss2023.06.yg17

Perspectives of Transmission and Traceability of Space Microwave Radiometric Benchmark

doi: 10.11728/cjss2023.06.yg17 cstr: 32142.14.cjss2023.06.yg17
  • Received Date: 2023-11-01
  • Rev Recd Date: 2023-11-05
  • Available Online: 2024-01-04
  • Space microwave radiometric benchmarks are demanding for global climate change research and accurate weather forecasting. Given the complicated transfer chain, the microwave radiometric benchmarks have not yet been established. In order to improve the accuracy and stability of satellite remote sensing, this project proposes top-level designed technical solutions for precise and traceable space microwave radiation in a forward perspective. The calibration benchmark sensors enable the development of the theory, method, and model of space microwave radiometric benchmarks. The traceability of microwave radiometric benchmarks in the transfer chain is integrated and assessed. To establish the evaluation system for the traceability of space radiation, a physical transfer chain of microwave radiometric benchmarks is realized and the simulation errors of the microwave system are addressed. By providing a unified reference for space microwave radiation measurement, this project is expected to provide highly precise, highly stable, and traceable capability of space microwave sounding, and enhance the core competitiveness of China.

     

  • loading
  • [1]
    SOLOMON, AL S E. Climate Change 2007: The physical science basis[J]. South African Geographical Journal Being A Record of the Proceedings of the South African Geographical Society, 2007, 92(1): 86-87 doi: 10.1080/03736245.2010.480842
    [2]
    ZOU C Z, GAO M, GOLDBERG M D. Error structure and atmospheric temperature trends in observations from the microwave sounding unit[J]. Journal of Climate, 2009, 22(7): 1661-1681 doi: 10.1175/2008JCLI2233.1
    [3]
    李彬, 金铭, 王晓峰, 一种微波黑体发射率测量装置及测量方法, 2020.02, 中国, ZL: 201810763057.5

    LI Bin, JIN Ming, WANG Xiaofeng. The invention relates to a microwave blackbody emissivity measuring device and measuring method. 2020.02. China. ZL: 201810763057.5
    [4]
    谷松岩, 郭杨, 窦芳丽, 等. 风云三号微波大气探测载荷辐射定标[J]. 遥感技术与应用, 2021, 36(1): 141-154

    GU Songyan, GUO Yang, DOU Fangli, et al. Radiometric calibration technology of microwave atmospheric sounders of FY-3 satellites[J]. Remote Sensing Technology and Application, 2021, 36(1): 141-154
    [5]
    XIE X X, WU S L, XU H X, et al. Ascending-descending bias correction of microwave radiation imager on board FengYun-3C[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(6): 3126-3134 doi: 10.1109/TGRS.2018.2881094
    [6]
    谷松岩, 王振占, 李靖, 等, FY-3A/MWHS在轨辐射定标及结果分析[J], 中国工程科学, 2013, 15(7): 92-100

    GU Songyan, WANG Zhenzhan, LI Jing, et al. FY-3A/MWHS data calibration and validation analysis[J], Strategic Study of CAE, 2013, 15(7): 92-100
    [7]
    XIANG L, MING B, MING J. Direct modeling of thermal radiation reception by antenna in close range[J]. IEEE Transactions on Antennas and Propagation, 2023, 71(2): 1757-1764 doi: 10.1109/TAP.2022.3217958
    [8]
    JIN M, FAN B H, LI X, et al. On the total reflectivity estimation of microwave calibration targets by backscattering measurements[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5223711
    [9]
    JIN M, LI B, BAI M. On the reflectivity measurements of microwave blackbody in bistatic Near-Field configuration[J]. IEEE Transactions on Antennas and Propagation, 2021, 69(11): 8027-8032 doi: 10.1109/TAP.2021.3083762
    [10]
    JIN M, LI B, FAN B H, et al. On the reflectivity extraction based on partial Bi-static Near-Field scattering from microwave blackbody[J]. IEEE Transactions on Antennas and Propagation, 2021, 69(3): 1692-1705 doi: 10.1109/TAP.2020.3019414
    [11]
    JIN M, YUAN R L, LI X, et al. Wideband microwave calibration target design for improved directional brightness temperature radiation[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 7001705
    [12]
    Space systems - Calibration requirements for satellite-based passive microwave sensors, ISO Standard 20930: 2018
    [13]
    HOUTZ D, BLACKWELL W, CAMPS A, et al, Development of an IEEE standard for calibration of microwave radiometers[J]. IEEE IGARSS, 2019: 4525-4527
    [14]
    GU D, HOUTZ D, RANDA J, et al. Reflectivity study of microwave blackbody target[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(9): 3443-3451 doi: 10.1109/TGRS.2011.2125975
    [15]
    GU D, HOUTZ D, RANDA J, et al. Extraction of illumination efficiency by solely radiometric measurements for improved brightness-temperature characterization of microwave blackbody target[J]. IEEE Transactions on Geo science and Remote Sensing, 2012, 50(11): 4575-4583 doi: 10.1109/TGRS.2012.2193890
    [16]
    GU D, RANDA J, WALKER D. A geometric error model for misaligned calibration target in passive microwave remote-sensing systems[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(6): 1597-1601 doi: 10.1109/LGRS.2013.2262471
    [17]
    GU D, WALKER D. Application of coherence theory to modeling of blackbody radiation at close range[J]. IEEE Transactions on Microwave Theory and Techniques, 2015, 63(5): 1475-1488 doi: 10.1109/TMTT.2015.2418193
    [18]
    HOUTZ D, EMERY W, GU D, et al. Brightness temperature calculation and uncertainty propagation for conical microwave blackbody targets[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(12): 7246-7256 doi: 10.1109/TGRS.2018.2849647
    [19]
    SCHÖDER A, MURK A, WYLDER R, et al. Electromagnetic design of calibration targets for MetOp-SG microwave instruments[J]. IEEE Transactions on Terahertz Science and Technology, 2017, 7(6): 677-685 doi: 10.1109/TTHZ.2017.2757442
    [20]
    JACOB K, SCHÖDER A, MURK A. Design, manufacturing and characterization of conical blackbody targets with optimized profile[J]. IEEE Transactions on Terahertz Science and Technology, 2018, 8(1): 76-84 doi: 10.1109/TTHZ.2017.2762309
    [21]
    JACOB K, SCHÖDER A, WERRA L, et al. Radiometric characterization of a water-based conical blackbody calibration targets for nillimeter-wave remote sensing[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12(6): 1688-1696 doi: 10.1109/JSTARS.2019.2913729
    [22]
    SCHÖDER A, MURK A, WYLDE R, et al. Brightness temperature computation of microwave calibration targets[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(12): 7104-7112 doi: 10.1109/TGRS.2017.2740559
    [23]
    VIRONE G, ADDAMO G, BOSISIO A, et al. Thermal vacuum cold target for the Metop-SG microwave imager[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 10348-10356 doi: 10.1109/JSTARS.2021.3117123
    [24]
    HOUTZ D A. Nist microwave blackbody: The design, testing, and verification of a conical brightness temperature source[J]. University of Colorado at Boulder ProQuest Dissertations Publishing, 2017: 10268590
    [25]
    HOUTZ D A, , EMERY W, GU D, et al. Brightness temperature calculation and uncertainty propagation for conical microwave blackbody targets [J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(12): 7246-7256.
    [26]
    LU Naimeng, DING Lei, ZHENG X B, et al. Introduction of the radiometric benchmark satellite being developed in China for remote sensing. Journal of Remote Sensing(Chinese) [J]. 2020, 24(6): 672-680. DOI:10.11834/jrs.20200011 (卢乃锰, 丁雷, 郑小兵, 等. 中国空间辐射测量基准技术. 遥感学报, 24(6): 672-680

    LU Naimeng, DING Lei, ZHENG X B, et al. Introduction of the radiometric benchmark satellite being developed in China for remote sensing. Journal of Remote Sensing(Chinese) [J]. 2020, 24(6): 672-680. DOI:10.11834/jrs.20200011 (卢乃锰, 丁雷, 郑小兵, 等. 中国空间辐射测量基准技术. 遥感学报, 24(6): 672-680)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)

    Article Metrics

    Article Views(346) PDF Downloads(61) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return