Citation: | HE Jieying, DONG Xiaolong, LU Naimeng. Perspectives of Transmission and Traceability of Space Microwave Radiometric Benchmark (in Chinese). Chinese Journal of Space Science, 2023, 43(6): 1016-1024 doi: 10.11728/cjss2023.06.yg17 |
[1] |
SOLOMON, AL S E. Climate Change 2007: The physical science basis[J]. South African Geographical Journal Being A Record of the Proceedings of the South African Geographical Society, 2007, 92(1): 86-87 doi: 10.1080/03736245.2010.480842
|
[2] |
ZOU C Z, GAO M, GOLDBERG M D. Error structure and atmospheric temperature trends in observations from the microwave sounding unit[J]. Journal of Climate, 2009, 22(7): 1661-1681 doi: 10.1175/2008JCLI2233.1
|
[3] |
李彬, 金铭, 王晓峰, 一种微波黑体发射率测量装置及测量方法, 2020.02, 中国, ZL: 201810763057.5
LI Bin, JIN Ming, WANG Xiaofeng. The invention relates to a microwave blackbody emissivity measuring device and measuring method. 2020.02. China. ZL: 201810763057.5
|
[4] |
谷松岩, 郭杨, 窦芳丽, 等. 风云三号微波大气探测载荷辐射定标[J]. 遥感技术与应用, 2021, 36(1): 141-154
GU Songyan, GUO Yang, DOU Fangli, et al. Radiometric calibration technology of microwave atmospheric sounders of FY-3 satellites[J]. Remote Sensing Technology and Application, 2021, 36(1): 141-154
|
[5] |
XIE X X, WU S L, XU H X, et al. Ascending-descending bias correction of microwave radiation imager on board FengYun-3C[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(6): 3126-3134 doi: 10.1109/TGRS.2018.2881094
|
[6] |
谷松岩, 王振占, 李靖, 等, FY-3A/MWHS在轨辐射定标及结果分析[J], 中国工程科学, 2013, 15(7): 92-100
GU Songyan, WANG Zhenzhan, LI Jing, et al. FY-3A/MWHS data calibration and validation analysis[J], Strategic Study of CAE, 2013, 15(7): 92-100
|
[7] |
XIANG L, MING B, MING J. Direct modeling of thermal radiation reception by antenna in close range[J]. IEEE Transactions on Antennas and Propagation, 2023, 71(2): 1757-1764 doi: 10.1109/TAP.2022.3217958
|
[8] |
JIN M, FAN B H, LI X, et al. On the total reflectivity estimation of microwave calibration targets by backscattering measurements[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5223711
|
[9] |
JIN M, LI B, BAI M. On the reflectivity measurements of microwave blackbody in bistatic Near-Field configuration[J]. IEEE Transactions on Antennas and Propagation, 2021, 69(11): 8027-8032 doi: 10.1109/TAP.2021.3083762
|
[10] |
JIN M, LI B, FAN B H, et al. On the reflectivity extraction based on partial Bi-static Near-Field scattering from microwave blackbody[J]. IEEE Transactions on Antennas and Propagation, 2021, 69(3): 1692-1705 doi: 10.1109/TAP.2020.3019414
|
[11] |
JIN M, YUAN R L, LI X, et al. Wideband microwave calibration target design for improved directional brightness temperature radiation[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 7001705
|
[12] |
Space systems - Calibration requirements for satellite-based passive microwave sensors, ISO Standard 20930: 2018
|
[13] |
HOUTZ D, BLACKWELL W, CAMPS A, et al, Development of an IEEE standard for calibration of microwave radiometers[J]. IEEE IGARSS, 2019: 4525-4527
|
[14] |
GU D, HOUTZ D, RANDA J, et al. Reflectivity study of microwave blackbody target[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(9): 3443-3451 doi: 10.1109/TGRS.2011.2125975
|
[15] |
GU D, HOUTZ D, RANDA J, et al. Extraction of illumination efficiency by solely radiometric measurements for improved brightness-temperature characterization of microwave blackbody target[J]. IEEE Transactions on Geo science and Remote Sensing, 2012, 50(11): 4575-4583 doi: 10.1109/TGRS.2012.2193890
|
[16] |
GU D, RANDA J, WALKER D. A geometric error model for misaligned calibration target in passive microwave remote-sensing systems[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(6): 1597-1601 doi: 10.1109/LGRS.2013.2262471
|
[17] |
GU D, WALKER D. Application of coherence theory to modeling of blackbody radiation at close range[J]. IEEE Transactions on Microwave Theory and Techniques, 2015, 63(5): 1475-1488 doi: 10.1109/TMTT.2015.2418193
|
[18] |
HOUTZ D, EMERY W, GU D, et al. Brightness temperature calculation and uncertainty propagation for conical microwave blackbody targets[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(12): 7246-7256 doi: 10.1109/TGRS.2018.2849647
|
[19] |
SCHÖDER A, MURK A, WYLDER R, et al. Electromagnetic design of calibration targets for MetOp-SG microwave instruments[J]. IEEE Transactions on Terahertz Science and Technology, 2017, 7(6): 677-685 doi: 10.1109/TTHZ.2017.2757442
|
[20] |
JACOB K, SCHÖDER A, MURK A. Design, manufacturing and characterization of conical blackbody targets with optimized profile[J]. IEEE Transactions on Terahertz Science and Technology, 2018, 8(1): 76-84 doi: 10.1109/TTHZ.2017.2762309
|
[21] |
JACOB K, SCHÖDER A, WERRA L, et al. Radiometric characterization of a water-based conical blackbody calibration targets for nillimeter-wave remote sensing[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12(6): 1688-1696 doi: 10.1109/JSTARS.2019.2913729
|
[22] |
SCHÖDER A, MURK A, WYLDE R, et al. Brightness temperature computation of microwave calibration targets[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(12): 7104-7112 doi: 10.1109/TGRS.2017.2740559
|
[23] |
VIRONE G, ADDAMO G, BOSISIO A, et al. Thermal vacuum cold target for the Metop-SG microwave imager[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 10348-10356 doi: 10.1109/JSTARS.2021.3117123
|
[24] |
HOUTZ D A. Nist microwave blackbody: The design, testing, and verification of a conical brightness temperature source[J]. University of Colorado at Boulder ProQuest Dissertations Publishing, 2017: 10268590
|
[25] |
HOUTZ D A, , EMERY W, GU D, et al. Brightness temperature calculation and uncertainty propagation for conical microwave blackbody targets [J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(12): 7246-7256.
|
[26] |
LU Naimeng, DING Lei, ZHENG X B, et al. Introduction of the radiometric benchmark satellite being developed in China for remote sensing. Journal of Remote Sensing(Chinese) [J]. 2020, 24(6): 672-680. DOI:10.11834/jrs.20200011 (卢乃锰, 丁雷, 郑小兵, 等. 中国空间辐射测量基准技术. 遥感学报, 24(6): 672-680
LU Naimeng, DING Lei, ZHENG X B, et al. Introduction of the radiometric benchmark satellite being developed in China for remote sensing. Journal of Remote Sensing(Chinese) [J]. 2020,
|