Volume 44 Issue 1
Feb.  2024
Turn off MathJax
Article Contents
LI Wentao, HUANG Wenhao, LIANG Guozhu. On Bubble Departure Radius in Liquid Oxygen Tank of Rocket Propulsion System under Microgravity (in Chinese). Chinese Journal of Space Science, 2024, 44(1): 122-132 doi: 10.11728/cjss2024.01.2023-0003
Citation: LI Wentao, HUANG Wenhao, LIANG Guozhu. On Bubble Departure Radius in Liquid Oxygen Tank of Rocket Propulsion System under Microgravity (in Chinese). Chinese Journal of Space Science, 2024, 44(1): 122-132 doi: 10.11728/cjss2024.01.2023-0003

On Bubble Departure Radius in Liquid Oxygen Tank of Rocket Propulsion System under Microgravity

doi: 10.11728/cjss2024.01.2023-0003 cstr: 32142.14.cjss2024.01.2023-0003
  • Received Date: 2023-01-03
  • Accepted Date: 2024-01-29
  • Rev Recd Date: 2023-02-05
  • Available Online: 2023-03-10
  • Studying the bubble departure radius in the liquid oxygen tank under microgravity is the basis for the propellant boiling and heat transfer calculation of the launch vehicle propulsion system in orbit. Unlike regular or low gravity environments, the Marangoni effect becomes essential in microgravity. To calculate the bubble departure radius, Firstly, a bubble dynamics model is developed, including buoyancy, inertia, pressure, surface tension, drag, and Marangoni forces. Secondly, to solve the problem of the narrow application range of the existing Marangoni force formulas, a more accurate correction factor is fitted by numerical simulation. Consequently, the Marangoni force model is extended. Finally, using the physical parameters of saturated liquid oxygen at 0.3 MPa, a conventional working pressure for the liquid oxygen tank of the launch vehicle, the change of the total force with the radius and the departure radius with gravity are calculated, respectively. The results show that bubbles' departure behavior can be divided into three zones: microgravity zone, transition zone, and low gravity zone. The microgravity zone can form large bubbles of a centimeter or even meter scale, while the low gravity zone can only form tiny bubbles of 0.1 mm scale. Compared with the previous models, the model in this work can be applied to all three zones. Therefore, it comprehensively reveals the bubble departure characteristics in the liquid oxygen tank under microgravity. It can also provide theoretical support for analyzing the heat transfer characteristics in the liquid oxygen tank.

     

  • loading
  • [1]
    ZHANG N, CHAO D F. Models for enhanced boiling heat transfer by unusual Marangoni effects under microgravity conditions[J]. International Communications in Heat and Mass Transfer, 1999, 26(8): 1081-1090 doi: 10.1016/S0735-1933(99)00099-8
    [2]
    YAN Chunjie, ZHENG Yongyu, Yang Qi, et al. Deformation characteristics of gas-liquid interface in cryogenic propellant tank under microgravity environment[J]. Vacuum and Cryogenics, 2022, 28(3): 285-290 doi: 10.3969/j.issn.1006-7086.2022.03.006
    [3]
    KARRI S R. Dynamics of bubble departure in microgravity[J]. Chemical Engineering Communications, 1988, 70(1): 127-135 doi: 10.1080/00986448808940623
    [4]
    SIEGEL R, KESHOCK E G. Effects of reduced gravity on nucleate boiling bubble dynamics in saturated water[J]. Aiche Journal, 1964, 10(4): 509-517 doi: 10.1002/aic.690100419
    [5]
    YOUNG N O, GOLDSTEIN J S, BLOCK M J. The motion of bubbles in a vertical temperature gradient[J]. Journal of Fluid Mechanics, 1959, 6(3): 350-356 doi: 10.1017/S0022112059000684
    [6]
    LIU Gang, ZHAO Jianfu, WAN Shixin, et al. Bubble departure diameter in microgravity pool boiling[J]. Journal of Engineering Thermophysics, 2008, 29(1): 93-95
    [7]
    ZHANG Y, WEI J, XUE Y, et al. Bubble dynamics in nucleate pool boiling on micro-pin-finned surfaces in microgravity[J]. Applied Thermal Engineering, 2014, 70: 172-182 doi: 10.1016/j.applthermaleng.2014.04.074
    [8]
    MA Yuan, SUN Peijie, LI Peng, et al. Investigation on the boiling bubble departure behavior of cryogenic fluid in microgravity[J]. Journal of Xi'an Jiaotong University, 2018, 52(9): 89-94
    [9]
    易天浩, 陈超越, 雷作胜, 等. 微重力池沸腾中的气泡和传热行为数值模拟[J]. 空间科学学报, 2019, 39(4): 469-477 doi: 10.11728/cjss2019.04.469

    YI Tianhao, CHEN Chaoyue, LEI Zuosheng, et al. Numerical simulation of bubble dynamics and heat transfer during pool boiling in microgravity[J]. Chinese Journal of Space Science, 2019, 39(4): 469-477 doi: 10.11728/cjss2019.04.469
    [10]
    BEER H, BORROW P, BEST R. Nucleate boiling: bubble growth and dynamics[M]// Hahne E. Heat Transfer in Boiling. New York: Academic Press, 1977: 21-52
    [11]
    MIKIC B B, ROHSENOW W M, GRIFFITH P. On bubble growth rates[J]. International Journal of Heat and Mass Transfer, 1970, 13(4): 657-666 doi: 10.1016/0017-9310(70)90040-2
    [12]
    WAGNER W, PRUß A. The IAPWS formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use[J]. Journal of Physical and Chemical Reference Data, 2002, 31(2): 387-535 doi: 10.1063/1.1461829
    [13]
    LEMMON E W, BELL I H, HUBER M L, et al. NIST standard reference database 23: reference fluid thermodynamic and transport properties-refprop, version 10.0 [EB/OL]. (2022-01-27)[2022-05-31]. https://doi.org/10.18434/T4/1502528
    [14]
    STRAUB J. Boiling Heat Transfer and Bubble Dynamics in Microgravity[M]. Advances in Heat Transfer, Amsterdam: Elsevier, 2001: 35, 57-172
    [15]
    LI Z, ZHU Z, LIU Q, et al. Simulating propellant reorientation of vehicle upper stage in microgravity environment[J]. Microgravity Science and Technology, 2013, 25(4): 237-241 doi: 10.1007/s12217-013-9351-z
    [16]
    YANG Shiming, Tao Wenquan. Numerical Heat Transfer[M]. 2nd ed. Beijing: Higher Education Press, 2001
    [17]
    STEWART R B, JACOBSEN R T, WAGNER W. Thermodynamic properties of oxygen from the triple point to 300 K with pressures to 80 MPa[J]. Journal of Physical and Chemical Reference Data, 1991, 20(5): 917-1021 doi: 10.1063/1.555897
    [18]
    LEE D J. Bubble departure radius under microgravity[J]. Chemical Engineering Communications, 1992, 117(1): 175-189 doi: 10.1080/00986449208936065
    [19]
    LI Jing, ZHAO Jianfu, YAN Na, et al. Bubble behavior in microgravity pool boiling[J]. Journal of Engineering Thermophysics, 2008(3): 439-442
    [20]
    ZHENG Yao, CHANG Huawei, CHEN Hong, et al. Bubble departure characteristics during liquid hydrogen flow boiling under microgravity[J]. Journal of Central South University (Science and Technology), 2021, 52(5): 1666-1672
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(6)

    Article Metrics

    Article Views(441) PDF Downloads(66) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return