Volume 44 Issue 1
Feb.  2024
Turn off MathJax
Article Contents
FAN Tianshu, CAO Yongjun, QIU Huixuan, WANG Zhiwei, HAN Desheng. Estimation of Energy Input during Throat Aurora Processes (in Chinese). Chinese Journal of Space Science, 2024, 44(1): 51-59 doi: 10.11728/cjss2024.01.2023-0065
Citation: FAN Tianshu, CAO Yongjun, QIU Huixuan, WANG Zhiwei, HAN Desheng. Estimation of Energy Input during Throat Aurora Processes (in Chinese). Chinese Journal of Space Science, 2024, 44(1): 51-59 doi: 10.11728/cjss2024.01.2023-0065

Estimation of Energy Input during Throat Aurora Processes

doi: 10.11728/cjss2024.01.2023-0065 cstr: 32142.14.cjss2024.01.2023-0065
  • Received Date: 2023-06-11
  • Rev Recd Date: 2023-08-01
  • Available Online: 2023-09-25
  • The throat aurora is a kind of discrete auroras occurred around the Magnetic Local Noon (MLN). The discrete arc is almost vertical to the auroral oval and extends equatorward. Previous studies have shown that the throat auroral structure corresponds to the localized magnetopause indentations which are related to the particular magnetopause reconnection. As is known, magnetic reconnection is the important approach inputting energy of solar wind, so the research of energy input of throat aurora is key to understand this particular magnetopause reconnection. A new way to estimate the energy input by using all auroral events happened on December 2015 is built. A relational expression about auroral intensity and energy flux of electronic precipitation is set up by observations of both ground station and satellite. Estimating the total energy input of a typical throat auroral event which lasted three minutes and happened on 8 December 2015 by this relational expression, and the answer is about $ 1.07\times {10}^{11}\;\mathrm{J} $. And the average power of input energy per area is about $ 1.31\times {10}^{-4}\;\mathrm{W} \cdot {\mathrm{m}}^{-2} $. Compared with the usual polar gap energy input results given by MHD simulation in previous studies, the energy input efficiency of the throat auroral process given in this paper is about twice that of the MHD simulation results, which indicates that the energy input accompanying the throat auroral process is very considerable and may cause local space weather effects.

     

  • loading
  • [1]
    CHAPMAN S, FERRARO V C A. A new theory of magnetic storms[J]. Nature, 1930, 126(3169): 129-130 doi: 10.1038/126129a0
    [2]
    AXFORD W I, HINES C O. A unifying theory of high-latitude geophysical phenomena and geomagnetic storms[J]. Canadian Journal of Physics, 1961, 39(10): 1433-1464 doi: 10.1139/p61-172
    [3]
    BIRN J, DRAKE J F, SHAY M A, et al. Geospace Environmental Modeling (GEM) magnetic reconnection challenge[J]. Journal of Geophysical Research: Space Physics, 2001, 106(A3): 3715-3719 doi: 10.1029/1999JA900449
    [4]
    SANDHOLT P E, FARRUGIA C J, MOEN J, et al. A classification of dayside auroral forms and activities as a function of interplanetary magnetic field orientation[J]. Journal of Geophysical Research: Space Physics, 1998, 103(A10): 23325-23345 doi: 10.1029/98JA02156
    [5]
    韩德胜, 胡泽骏, 陈相材, 等. 基于北极黄河站观测的日侧极光研究新进展[J]. 极地研究, 2018, 30(3): 235-250 doi: 10.13679/j.jdyj.20180020

    HAN Desheng, HU Zejun, CHEN Xiangcai, et al. Recent results obtained from dayside optical auroral observations at Yellow River station[J]. Chinese Journal of Polar Research, 2018, 30(3): 235-250 doi: 10.13679/j.jdyj.20180020
    [6]
    MENG C I, MAUK B, MCILWAIN C E. Electron precipitation of evening diffuse aurora and its conjugate electron fluxes near the magnetospheric equator[J]. Journal of Geophysical Research: Space Physics, 1979, 84(A6): 2545-2558 doi: 10.1029/JA084iA06p02545
    [7]
    LOCKWOOD M. Relationship of dayside auroral precipitations to the open‐closed separatrix and the pattern of convective flow[J]. Journal of Geophysical Research: Space Physics, 1997, 102(A8): 17475-17487 doi: 10.1029/97JA01100
    [8]
    MENDE S B, FREY H U, ANGELOPOULOS V. Source of the dayside cusp aurora[J]. Journal of Geophysical Research: Space Physics, 2016, 121(8): 7728-7738 doi: 10.1002/2016JA022657
    [9]
    SHI R, LIANG J, HU Z J, et al. The potential role of modified electron acoustic wave and nonlinear mode coupling in mono-energetic aurora[J]. Geophysical Research Letters, 2023, 50(9): e2022GL102680 doi: 10.1029/2022GL102680
    [10]
    FELDSTEIN Y I, ELPHINSTONE R D. Aurorae and the large-scale structure of the magnetosphere[J]. Journal of Geomagnetism and Geoelectricity, 1992, 44(12): 1159-1174 doi: 10.5636/jgg.44.1159
    [11]
    HAN D S, CHEN X C, LIU J J, et al. An extensive survey of dayside diffuse aurora based on optical observations at Yellow River Station[J]. Journal of Geophysical Research: Space Physics, 2015, 120(9): 7447-7465 doi: 10.1002/2015JA021699
    [12]
    HAN D S, LIU J J, CHEN X C, et al. Direct evidence for throat aurora being the ionospheric signature of magnetopause transient and reflecting localized magnetopause indentations[J]. Journal of Geophysical Research: Space Physics, 2018, 123(4): 2658-2667 doi: 10.1002/2017JA024945
    [13]
    QIU H X, HAN D S, WANG B Y, et al. In situ observation of a magnetopause indentation that is correspondent to throat aurora and is caused by magnetopause reconnection[J]. Geophysical Research Letters, 2022, 49(15): e2022GL099408 doi: 10.1029/2022GL099408
    [14]
    HAN D S. Ionospheric polarization electric field guiding magnetopause reconnection: a conceptual model of throat aurora[J]. Science China Earth Sciences, 2019, 62(12): 2099-2105 doi: 10.1007/s11430-019-9358-8
    [15]
    HAN D S, HIETALA H, CHEN X C, et al. Observational properties of dayside throat aurora and implications on the possible generation mechanisms[J]. Journal of Geophysical Research: Space Physics, 2017, 122(2): 1853-1870 doi: 10.1002/2016JA023394
    [16]
    韩德胜, 邱荟璇, 石润. 喉区极光模型再考[J]. 地球与行星物理论评, 2022, 53(5): 605-612 doi: 10.19975/j.dqyxx.2022-036

    HAN Desheng, QIU Huixuan, SHI Run. Reconsideration on the concept model of throat aurora[J]. Reviews of Geophysics and Planetary Physics, 2022, 53(5): 605-612 doi: 10.19975/j.dqyxx.2022-036
    [17]
    李国君. 基于ASI的地球极隙区电离层投影边界定位与建模[D]. 西安: 西安电子科技大学, 2021

    LI Guojun. Location and Modeling of the Ionospheric Projection Boundary of Earth’s Cusp Region Based on ASI[D]. Xi’an: Xidian University, 2021
    [18]
    丘琪, 杨惠根, 陆全明, 等. 日侧极光弧的发光强度与沉降电子能谱的相关关系[J]. 地球物理学报, 2017, 60(2): 489-498 doi: 10.6038/cjg20170204

    QIU Qi, YANG Huigen, LU Quanming, et al. Correlation between emission intensities in dayside auroral arcs and precipitating electron spectra[J]. Chinese Journal of Geophysics, 2017, 60(2): 489-498 doi: 10.6038/cjg20170204
    [19]
    LU J, ZHANG H X, WANG M, et al. Energy transfer across the magnetopause under radial IMF conditions[J]. The Astrophysical Journal, 2021, 920(1): 52 doi: 10.3847/1538-4357/ac15f4
    [20]
    CHEN X C, HAN D S, LORENTZEN D A, et al. Dynamic properties of throat aurora revealed by simultaneous ground and satellite observations[J]. Journal of Geophysical Research: Space Physics, 2017, 122(3): 3469-3486 doi: 10.1002/2016JA023033
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(1)

    Article Metrics

    Article Views(425) PDF Downloads(73) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return