Volume 44 Issue 2
Apr.  2024
Turn off MathJax
Article Contents
YANG Yazhou, MILLIKEN Ralph E, BRAMBLE Michael S, PATTERSON William R, ZOU Yongliao, LIU Yang. Laboratory Thermal Emission Spectral Measurement and Calibration Methods for Planetary Science Research (in Chinese). Chinese Journal of Space Science, 2024, 44(2): 270-286 doi: 10.11728/cjss2024.01.2023-0116
Citation: YANG Yazhou, MILLIKEN Ralph E, BRAMBLE Michael S, PATTERSON William R, ZOU Yongliao, LIU Yang. Laboratory Thermal Emission Spectral Measurement and Calibration Methods for Planetary Science Research (in Chinese). Chinese Journal of Space Science, 2024, 44(2): 270-286 doi: 10.11728/cjss2024.01.2023-0116

Laboratory Thermal Emission Spectral Measurement and Calibration Methods for Planetary Science Research

doi: 10.11728/cjss2024.01.2023-0116 cstr: 32142.14.cjss2024.01.2023-0116
  • Received Date: 2023-10-22
  • Accepted Date: 2024-01-15
  • Rev Recd Date: 2023-11-19
  • Available Online: 2023-12-04
  • Accurate information regarding the surface composition is crucial for understanding the formation and evolution history of planetary bodies. Visible and near-infrared remote sensing spectroscopic techniques have long been used for the detection of surface composition. However, in the thermal infrared spectral range, various types of planetary surface materials exhibit richer spectral features. With the development of thermal emission spectroscopic techniques, it has been increasingly used in planetary exploration. Particularly, in the ongoing and planned asteroid exploration missions, thermal emission spectrometers are employed as key payloads. In order to better interpret the thermal emission spectral data to be obtained in the future, it is essential to establish scientifically reasonable data processing and calibration schemes. This paper provides a comprehensive overview on the design of thermal emission spectral measurement devices for planetary science research, the measurement process, and data reduction methods. To obtain accurate emissivity spectra data, the challenge of distinguishing sample radiation signals from instrument radiation during thermal emission measurements must be properly addressed first. Especially, for measurements conducted under low-temperature and vacuum conditions that are similar to the surface conditions of the Moon and asteroids. This paper proposes and demonstrates a data reduction method based on interferograms, which are the original signals measured by FTIR spectrometer. This method can effectively separate the actual radiation signal from the samples, thus yielding more accurate emissivity spectra data. The insights derived from this study can serve as valuable references for the development and construction of thermal emission measurement devices and can facilitate the processing and scientific interpretation of data from future missions such as Tianwen-2.

     

  • loading
  • [1]
    SHKURATOV Y, KAYDASH V, KOROKHIN V, et al. Optical measurements of the Moon as a tool to study its surface[J]. Planetary and Space Science, 2011, 59(13): 1326-1371 doi: 10.1016/j.pss.2011.06.011
    [2]
    CLARK R N, ROUSH T L. Reflectance spectroscopy: Quantitative analysis techniques for remote sensing applications[J]. Journal of Geophysical Research: Solid Earth, 1984, 89(B7): 6329-6340 doi: 10.1029/JB089iB07p06329
    [3]
    LEMELIN M, LUCEY P G, MILJKOVIĆ K, et al. The compositions of the lunar crust and upper mantle: Spectral analysis of the inner rings of lunar impact basins[J]. Planetary and Space Science, 2019, 165: 230-243 doi: 10.1016/j.pss.2018.10.003
    [4]
    MILJKOVIĆ K, WIECZOREK M A, COLLINS G S, et al. Excavation of the lunar mantle by basin-forming impact events on the Moon[J]. Earth and Planetary Science Letters, 2015, 409: 243-251 doi: 10.1016/j.jpgl.2014.10.041
    [5]
    MORIARTY DANIEL P III, DYGERT N, VALENCIA S N, et al. The search for lunar mantle rocks exposed on the surface of the Moon[J]. Nature Communications, 2021, 12(1): 4659 doi: 10.1038/s41467-021-24626-3
    [6]
    HESS P C, PARMENTIER E M. A model for the thermal and chemical evolution of the Moon’s interior: Implications for the onset of mare volcanism[J]. Earth and Planetary Science Letters, 1995, 134(3/4): 501-514
    [7]
    JOLLIFF B L, GILLIS J J, HASKIN L A, et al. Major lunar crustal terranes: Surface expressions and crust-mantle origins[J]. Journal of Geophysical Research: Planets, 2000, 105(E2): 4197-4216 doi: 10.1029/1999JE001103
    [8]
    PIETERS C M, NOBLE S K. Space weathering on airless bodies[J]. Journal of Geophysical Research: Planets, 2016, 121(10): 1865-1884 doi: 10.1002/2016JE005128
    [9]
    GUEYMARD C A. Revised composite extraterrestrial spectrum based on recent solar irradiance observations[J]. Solar Energy, 2018, 169: 434-440 doi: 10.1016/j.solener.2018.04.067
    [10]
    MATTHEWS G. Celestial body irradiance determination from an underfilled satellite radiometer: application to albedo and thermal emission measurements of the Moon using CERES[J]. Applied Optics, 2008, 47(27): 4981-4993 doi: 10.1364/AO.47.004981
    [11]
    WILLIAMS J P, PAIGE D A, GREENHAGEN B T, et al. The global surface temperatures of the Moon as measured by the Diviner Lunar Radiometer Experiment[J]. Icarus, 2017, 283: 300-325 doi: 10.1016/j.icarus.2016.08.012
    [12]
    FONTENLA J, WHITE O R, FOX P A, et al. Calculation of solar irradiances. I. Synthesis of the solar spectrum[J]. The Astrophysical Journal, 1999, 518(1): 480-499 doi: 10.1086/307258
    [13]
    CLARK R N. Spectroscopy of rocks and minerals and principles of spectroscopy[M]//Remote Sensing for the Earth Sciences: Manual of Remote Sensing. New York: John Wiley and Sons, 1999: 3-58
    [14]
    BURNS R G. Mineralogical Applications of Crystal Field Theory[M]. Cambridge: Cambridge University Press, 1993
    [15]
    CLOUTIS E A, GAFFEY M J, JACKOWSKI T L, et al. Calibrations of phase abundance, composition, and particle size distribution for olivine-orthopyroxene mixtures from reflectance spectra[J]. Journal of Geophysical Research: Solid Earth, 1986, 91(B11): 11641-11653 doi: 10.1029/JB091iB11p11641
    [16]
    GAFFEY M J, BELL J F, BROWN R H, et al. Mineralogical variations within the S-type asteroid class[J]. Icarus, 1993, 106(2): 573-602 doi: 10.1006/icar.1993.1194
    [17]
    YANG Y Z, LIN H L, LIU Y, et al. The effects of viewing geometry on the spectral analysis of lunar regolith as inferred by in situ spectrophotometric measurements of Chang’E-4[J]. Geophysical Research Letters, 2020, 47(8): e2020GL087080 doi: 10.1029/2020GL087080
    [18]
    ZHANG X Y, ZHU M H, BUGIOLACCHI R. Mafic minerals in the South Pole-Aitken basin[J]. Journal of Geophysical Research: Planets, 2019, 124(6): 1581-1591 doi: 10.1029/2018JE005870
    [19]
    HAPKE B. Theory of Reflectance and Emittance Spectroscopy[M]. 2nd ed. Cambridge: Cambridge University Press, 2012
    [20]
    LI S, LI L. Radiative transfer modeling for quantifying lunar surface minerals, particle size, and submicroscopic metallic Fe[J]. Journal of Geophysical Research: Planets, 2011, 116(E9): E09001
    [21]
    Yang Y Z, Li S, Milliken R E, et al. Phase functions of typical lunar surface minerals derived for the Hapke model and implications for visible to near-infrared spectral unmixing[J]. Journal of Geophysical Research: Planets, 2019, 124(1): 31-60 doi: 10.1029/2018JE005713
    [22]
    GLOTCH T D, LUCEY G, BANDFIELD J L, et al. Highly silicic compositions on the Moon[J]. Science, 2010, 329(5998): 1510-1513 doi: 10.1126/science.1192148
    [23]
    KAPLAN H H, MILLIKEN R E, ALEXANDER C M O D, et al. Reflectance spectroscopy of insoluble organic matter (IOM) and carbonaceous meteorites[J]. Meteoritics & Planetary Science, 2019, 54(5): 1051-1068
    [24]
    MILLIKEN R E, HIROI T, SCHOLES D, et al. The NASA Reflectance Experiment LABoratory (RELAB) facility: An online spectral database for planetary exploration[C]. LPI Contributions, 2021, 2654
    [25]
    HARRIS D C, BERTOLUCCI M D. Symmetry and Spectroscopy: An Introduction to Vibrational and Electronic Spectroscopy[M]. New York: Dover Publications, 1989
    [26]
    BISHOP J L, LANE M D, DYAR M D, et al. Reflectance and emission spectroscopy study of four groups of phyllosilicates: smectites, kaolinite-serpentines, chlorites and micas[J]. Clay Minerals, 2008, 43(1): 35-54 doi: 10.1180/claymin.2008.043.1.03
    [27]
    CHRISTENSEN R, BANDFIELD J L, HAMILTON V E, et al. A thermal emission spectral library of rock-forming minerals[J]. Journal of Geophysical Research: Planets, 2000, 105(E4): 9735-9739 doi: 10.1029/1998JE000624
    [28]
    COOPER B L, SALISBURY J W, KILLEN R M, et al. Midinfrared spectral features of rocks and their powders[J]. Journal of Geophysical Research: Planets, 2002, 107(E4): 1-1-1-17
    [29]
    LANE M D. Mid-infrared emission spectroscopy of sulfate and sulfate-bearing minerals[J]. American Mineralogist, 2007, 92(1): 1-18 doi: 10.2138/am.2007.2170
    [30]
    DU P X, YUAN P, LIU J C, et al. Clay minerals on Mars: An up-to-date review with future perspectives[J]. Earth-Science Reviews, 2023, 243: 104491 doi: 10.1016/j.earscirev.2023.104491
    [31]
    赵珊茸. 结晶学及矿物学[M]. 3版. 北京: 高等教育出版社, 2017

    ZHAO Shanrong. Crystallography and Mineralogy[M]. 3rd Edition, Beijing: Higher Education Press, 2017
    [32]
    NOEL Y, CATTI M, D’ARCO P, et al. The vibrational frequencies of forsterite Mg2SiO4: an all-electron ab initio study with the CRYSTAL code[J]. Physics and Chemistry of Minerals, 2006, 33(6): 383-393 doi: 10.1007/s00269-006-0085-y
    [33]
    YANG Y Z, JIANG T, LIU Y, et al. A micro mid-infrared spectroscopic study of Chang’e-5 sample[J]. Journal of Geophysical Research: Planets, 2022, 127(8): e2022JE007453 doi: 10.1029/2022JE007453
    [34]
    CHRISTENSEN P R, ANDERSON D L, CHASE S C, et al. Thermal emission spectrometer experiment: Mars Observer mission[J]. Journal of Geophysical Research: Planets, 1992, 97(E5): 7719-7734 doi: 10.1029/92JE00453
    [35]
    SALISBURY J W, WALTER L S. Thermal infrared (2.5-13.5 μm) spectroscopic remote sensing of igneous rock types on particulate planetary surfaces[J]. Journal of Geophysical Research: Solid Earth, 1989, 94(B7): 9192-9202 doi: 10.1029/JB094iB07p09192
    [36]
    HAMILTON V E. Thermal infrared (vibrational) spectroscopy of Mg–Fe olivines: A review and applications to determining the composition of planetary surfaces[J]. Geochemistry, 2010, 70(1): 7-33 doi: 10.1016/j.chemer.2009.12.005
    [37]
    ZENG X J, LI X Y, MARTIN D, et al. Micro-FTIR spectroscopy of lunar pyroclastic and impact glasses as a new diagnostic tool to discern them[J]. Journal of Geophysical Research: Planets, 2019, 124(12): 3267-3282 doi: 10.1029/2019JE006237
    [38]
    HUNT G R, SALISBURY J W. Mid-infrared spectroscopic observations of the Moon[J]. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 1969, 264(1150): 109-139 doi: 10.1098/rsta.1969.0005
    [39]
    MURCRAY F H, MURCRAY D G, WILLIAMS W J. Infrared emissivity of lunar surface features: 1. Balloon-borne observations[J]. Journal of Geophysical Research, 1970, 75(14): 2662-2669 doi: 10.1029/JB075i014p02662
    [40]
    CHRISTENSEN R, BANDFIELD J L, HAMILTON V E, et al. Mars Global Surveyor Thermal Emission Spectrometer experiment: Investigation description and surface science results[J]. Journal of Geophysical Research: Planets, 2001, 106(E10): 23823-23871 doi: 10.1029/2000JE001370
    [41]
    GREENHAGEN B T, LUCEY G, WYATT M B, et al. Global silicate mineralogy of the Moon from the Diviner lunar radiometer[J]. Science, 2010, 329(5998): 1507-1509 doi: 10.1126/science.1192196
    [42]
    RUFF S W, CHRISTENSEN R R, BLANEY D L, et al. The rocks of Gusev Crater as viewed by the Mini-TES instrument[J]. Journal of Geophysical Research: Planets, 2006, 111(E12): E12S18
    [43]
    AMIRI H E S, BRAIN D, SHARAF O, et al. The emirates mars mission[J]. Space Science Reviews, 2022, 218(1): 4 doi: 10.1007/s11214-021-00868-x
    [44]
    CHRISTENSEN P R, HAMILTON V E, MEHALL G L, et al. The OSIRIS-REx thermal emission spectrometer (OTES) instrument[J]. Space Science Reviews, 2018, 214(5): 87 doi: 10.1007/s11214-018-0513-6
    [45]
    OLKIN C B, LEVISON H F, VINCENT M, et al. Lucy mission to the Trojan asteroids: Instrumentation and encounter concept of operations[J]. The Planetary Science Journal, 2021, 2(5): 172 doi: 10.3847/PSJ/abf83f
    [46]
    LIU B, LIU X D, JIA X Y, et al. Active asteroid 311P/PanSTARRS: Rotational instability as the origin of its multitails?[J]. The Astronomical Journal, 2023, 166(4): 156 doi: 10.3847/1538-3881/acf31c
    [47]
    XU L, LI H, PEI Z Y, et al. A brief introduction to the international lunar research station program and the interstellar express mission[J]. Chinese Journal of Space Science, 2022, 42(4): 511-513 doi: 10.11728/cjss2022.04.yg28
    [48]
    刘占一, 许婷, 张魏静, 等. 热防护材料表面发射率测试研究[J]. 火箭推进, 2019, 45(4): 79-84,90 doi: 10.3969/j.issn.1672-9374.2019.04.013

    LIU Zhanyi, XU Ting, ZHANG Weijing, et al. Measurement study on surface emissivity of thermal protection material[J]. Journal of Rocket Propulsion, 2019, 45(4): 79-84,90 doi: 10.3969/j.issn.1672-9374.2019.04.013
    [49]
    王新北. 基于傅立叶红外光谱仪的材料光谱发射率测量技术的研究[D]. 哈尔滨: 哈尔滨工业大学, 2007

    WANG Xinbei. Study on Measurement of Spectral Emissivity of Materials based on Fourier Infrared Spectrometer[D]. Harbin: Harbin Institute of Technology, 2007
    [50]
    原遵东, 张俊祺, 赵军, 等. 材料光谱发射率精密测量装置[J]. 仪器仪表学报, 2008, 29(8): 1659-1664

    YUAN Zundong, ZHANG Junqi, ZHAO Jun, et al. Precision measurement facility of material spectral emissivity[J]. Chinese Journal of Scientific Instrument, 2008, 29(8): 1659-1664
    [51]
    张岚,. 张术坤, 蔡静. 基于傅里叶红外光谱仪的材料发射率测量方法研究[J]. 工业计量, 2015, 25(4): 16-18,35

    ZHANG. Lan, ZHANG Shukun, CAI Jing. A study on the measurement method of material emissivity based on Fourier transform infrared spectroscopy[J]. Industrial Metrology, 2015, 25(4): 16-18,35
    [52]
    BRAMBLE M S, YANG Y Z, PATTERSON W R, et al. Radiometric calibration of thermal emission data from the Asteroid and Lunar Environment Chamber (ALEC)[J]. Review of Scientific Instruments, 2019, 90(9): 093101 doi: 10.1063/1.5096363
    [53]
    DONALDSON HANNA K L, THOMAS I R, BOWLES N E, et al. Laboratory emissivity measurements of the plagioclase solid solution series under varying environmental conditions[J]. Journal of Geophysical Research: Planets, 2012, 117(E11): E11004
    [54]
    SHIRLEY K A, GLOTCH T D. Particle size effects on mid-infrared spectra of lunar analog minerals in a simulated lunar environment[J]. Journal of Geophysical Research: Planets, 2019, 124(4): 970-988 doi: 10.1029/2018JE005533
    [55]
    DONALDSON HANNA K L, GREENHAGEN B T, PATTERSON W R, et al. Effects of varying environmental conditions on emissivity spectra of bulk lunar soils: Application to Diviner thermal infrared observations of the Moon[J]. Icarus, 2017, 283: 326-342 doi: 10.1016/j.icarus.2016.05.034
    [56]
    DONALDSON HANNA K L, WYATT M B, THOMAS I R, et al. Thermal infrared emissivity measurements under a simulated lunar environment: Application to the Diviner Lunar Radiometer Experiment[J]. Journal of Geophysical Research: Planets, 2012, 117(E12): E00H05
    [57]
    LOGAN L M, HUNT G R. Emission spectra of particulate silicates under simulated lunar conditions[J]. Journal of Geophysical Research, 1970, 75(32): 6539-6548 doi: 10.1029/JB075i032p06539
    [58]
    RUFF S W, CHRISTENSEN P R, BARBERA P W, et al. Quantitative thermal emission spectroscopy of minerals: A laboratory technique for measurement and calibration[J]. Journal of Geophysical Research: Solid Earth, 1997, 102(B7): 14899-14913 doi: 10.1029/97JB00593
    [59]
    THOMAS I R, GREENHAGEN B T, BOWLES N E, et al. A new experimental setup for making thermal emission measurements in a simulated lunar environment[J]. Review of Scientific Instruments, 2012, 83(12): 124502 doi: 10.1063/1.4769084
    [60]
    DONALDSON HANNA K L, BOWLES N E, WARREN T J, et al. Spectral characterization of Bennu analogs using PASCALE: A new experimental set-up for simulating the near-surface conditions of airless bodies[J]. Journal of Geophysical Research: Planets, 2021, 126(2): e2020JE006624 doi: 10.1029/2020JE006624
    [61]
    GRIFFITHS P R, DE HASETH J A. Fourier Transform Infrared Spectrometry[M]. 2nd ed. Hoboken: John Wiley & Sons, 2007
    [62]
    SÜSS B, RINGLEB F, HEBERLE J. New ultrarapid-scanning interferometer for FT-IR spectroscopy with microsecond time-resolution[J]. Review of Scientific Instruments, 2016, 87(6): 063113 doi: 10.1063/1.4953658
    [63]
    李希明, 李文军, 顾喆涵, 等. 在中低温条件下环境辐射对光谱发射率测量的影响[J]. 计量学报, 2014, 35(1): 10-12 doi: 10.3969/j.issn.1000-1158.2014.01.03

    LI Ximing, LI Wenjun, GU Zhehan, et al. Effect on environment radiation in measurements for spectral emissivity at medium and low temperatures[J]. Acta Metrologica Sinica, 2014, 35(1): 10-12 doi: 10.3969/j.issn.1000-1158.2014.01.03
    [64]
    YANG Y, MILLIKEN R E, PATTERSON W R, et al. Data reduction of FTIR thermal emission measurements under cold vacuum conditions: Processing of interferograms vs. spectra[C]//49th Annual Lunar and Planetary Science Conference. The Woodlands, Texas, 2018
    [65]
    BROWN R J, YOUNG B G. Spectral emission signatures of ambient temperature objects[J]. Applied Optics, 1975, 14(12): 2927-2934 doi: 10.1364/AO.14.002927
    [66]
    STUART B H. Infrared Spectroscopy: Fundamentals and Applications[M]. Chichester, UK: John Wiley & Sons, 2004
    [67]
    PAPIKE J J, SIMON S B, LAUL J C. The lunar regolith: Chemistry, mineralogy, and petrology[J]. Reviews of Geophysics, 1982, 20(4): 761-826 doi: 10.1029/RG020i004p00761
    [68]
    LUCEY P G, GREENHAGEN B T, SONG E, et al. Space weathering effects in Diviner Lunar Radiometer multispectral infrared measurements of the lunar Christiansen Feature: Characteristics and mitigation[J]. Icarus, 2017, 283: 343-351 doi: 10.1016/j.icarus.2016.05.010
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(1)

    Article Metrics

    Article Views(680) PDF Downloads(92) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return