Volume 44 Issue 1
Feb.  2024
Turn off MathJax
Article Contents
LI Bo, CUI Ruifei, WENG Libin. Seasonal Variations of Global Ionospheric NmF2 and hmF2 (in Chinese). Chinese Journal of Space Science, 2024, 44(1): 60-70 doi: 10.11728/cjss2024.01.2023-0130
Citation: LI Bo, CUI Ruifei, WENG Libin. Seasonal Variations of Global Ionospheric NmF2 and hmF2 (in Chinese). Chinese Journal of Space Science, 2024, 44(1): 60-70 doi: 10.11728/cjss2024.01.2023-0130

Seasonal Variations of Global Ionospheric NmF2 and hmF2

doi: 10.11728/cjss2024.01.2023-0130 cstr: 32142.14.cjss2024.01.2023-0130
  • Received Date: 2023-11-14
  • Rev Recd Date: 2023-12-12
  • Available Online: 2023-12-22
  • The seasonal variations of global ionospheric NmF2 and hmF2 have been analyzed by using the monthly COSMIC ionospheric data from 2006 to 2019 and wavelet analysis method. The results show that the ionospheric NmF2 and hmF2 are significantly different with local time, season and latitude. The ionospheric peak parameters have positive correlation with the solar activity, and their correlation coefficients are above 0.9 and 0.8, respectively. The ionospheric NmF2 at noon exists significantly annual and semiannual variations, especially under the high solar activity conditions. However, the annual variation of ionospheric NmF2 has been mainly observed at nighttime. Meanwhile, the annual variation of ionospheric hmF2 at noon is significant in all years, but almost absent during midnight. Additionally, and the seasonal variations of ionospheric NmF2 and hmF2 in the southern hemisphere are more obvious than that in the northern hemisphere. Additionally, the seasonal variations of ionospheric peak parameters are more significant during high solar activity years. Moreover, there seem to be periodic signals of 25~35 months in the solar activity index and ionospheric peak parameters, but their power spectrum are not greater than 95% significance level, and we thought that the ionosphere would be not affected by the QBO signal.

     

  • loading
  • [1]
    LIU L B, WAN W X, CHEN Y D, et al. Solar activity effects of the ionosphere: a brief review[J]. Chinese Science Bulletin, 2011, 56(12): 1202-1211 doi: 10.1007/s11434-010-4226-9
    [2]
    YAO Y B, ZHAI C Z, KONG J, et al. Contribution of solar radiation and geomagnetic activity to global structure of 27-day variation of ionosphere[J]. Journal of Geodesy, 2017, 91(11): 1299-1311 doi: 10.1007/s00190-017-1026-x
    [3]
    李涌涛, 李建文, 代桃高, 等. 太阳活动对电离层TEC变化影响分析[J]. 空间科学学报, 2018, 38(6): 847-854 doi: 10.11728/cjss2018.06.847

    LI Yongtao, LI Jianwen, DAI Taogao, et al. Influence of solar activity on ionospheric TEC change[J]. Chinese Journal of Space Science, 2018, 38(6): 847-854 doi: 10.11728/cjss2018.06.847
    [4]
    徐中华, 刘瑞源, 刘顺林, 等. 南极中山站电离层F2层临界频率变化特征[J]. 地球物理学报, 2006, 49(1): 1-8 doi: 10.3321/j.issn:0001-5733.2006.01.001

    XU Zhonghua, LIU Ruiyuan, LIU Shunlin, et al. Variations of the ionospheric F2 layer critical frequency at Zhongshan Station, Antarctica[J]. Chinese Journal of Geophysics, 2006, 49(1): 1-8 doi: 10.3321/j.issn:0001-5733.2006.01.001
    [5]
    余涛, 万卫星, 刘立波, 等. 利用IGS数据分析全球TEC的周年和半年变化特性[J]. 地球物理学报, 2006, 49(4): 943-949

    YU Tao, WAN Weixing, LIU Libo, et al. Using IGS data to analysis the global TEC annual and semiannual variation[J]. Chinese Journal of Geophysics, 2006, 49(4): 943-949
    [6]
    LIU L B, ZHAO B Q, WAN W X, et al. Seasonal variations of the ionospheric electron densities retrieved from Constellation Observing System for Meteorology, Ionosphere, and Climate mission radio occultation measurements[J]. Journal of Geophysical Research: Space Physics, 2009, 114(A2): A02302
    [7]
    翁利斌, 方涵先, 张阳, 等. Athens地区电离层TEC、 Nm F2以及板厚[J]. 地球物理学报, 2012, 55(11): 3558-3567 doi: 10.6038/j.issn.0001-5733.2012.11.005

    WENG Libin, FANG Hanxian, ZHANG Yang, et al. Ionospheric TEC, Nm F2 and slab thickness over the Athens region[J]. Chinese Journal of Geophysics, 2012, 55(11): 3558-3567 doi: 10.6038/j.issn.0001-5733.2012.11.005
    [8]
    QIAN L Y, BURNS A G, SOLOMON S C, et al. Annual/semiannual variation of the ionosphere[J]. Geophysical Research Letters, 2013, 40(10): 1928-1933 doi: 10.1002/grl.50448
    [9]
    刘桢迪, 方涵先, 翁利斌, 等. 基于CHAMP、GRACE和COSMIC掩星数据的全球电离层 hm F2建模研究[J]. 地球物理学报, 2016, 59(10): 3555-3565 doi: 10.6038/cjg20161003

    LIU Zhendi, FANG Hanxian, WENG Libin, et al. Global model of ionospheric hm F2 based on CHAMPE, GRACE and COSMIC radio occultation[J]. Chinese Journal of Geophysics, 2016, 59(10): 3555-3565 doi: 10.6038/cjg20161003
    [10]
    MOSES M, PANDA S K, SHARMA S K, et al. Ionospheric electron density characteristics over Africa from FORMOSAT-3/COSMIC radio occultation[J]. Astrophysics and Space Science, 2020, 365(7): 116 doi: 10.1007/s10509-020-03833-2
    [11]
    蓝加平, 刘凯, 朱正平. 中国东部地区电离层 f0 F2 在第22~23太阳活动周时空变化特性[J]. 中南民族大学学报(自然科学版), 2022, 41(2): 186-193

    LAN Jiaping, LIU Kai, ZHU Zhengping. Temporal and spatial variation features of ionospheric f0 F2 in Eastern China during the 22-23 solar activity cycle[J]. Journal of South-Central Minzu University (Natural Science Edition), 2022, 41(2): 186-193
    [12]
    陈林峰, 程云鹏. 基于COSMIC数据开展全球电离层foF2建模及变化特征研究[J]. 科学技术与工程, 2022, 22(34): 15036-15042

    CHEN Linfeng, CHENG Yunpeng. Model and investigate the global ionospheric foF2 based on COSMIC observation[J]. Science Technology and Engineering, 2022, 22(34): 15036-15042
    [13]
    LIU Z D, FANG H X, HOQUE M M, et al. A new empirical model of Nm F2 based on CHAMP, GRACE, and COSMIC radio occultation[J]. Remote Sensing, 2019, 11(11): 1386 doi: 10.3390/rs11111386
    [14]
    TORRENCE C, COMPO G P. A practical guide to wavelet analysis[J]. Bulletin of the American Meteorological Society, 1998, 79(1): 61-78 doi: 10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2
    [15]
    翁利斌, 方涵先, 张阳, 等. 基于小波与交叉小波分析的太阳黑子与宇宙线相关性研究[J]. 空间科学学报, 2013, 33(1): 13-19 doi: 10.11728/cjss2013.01.013

    WENG Libin, FANG Hanxian, ZHANG Yang, et al. Correlation research between the sunspot numbers and the cosmic rays based on wavelet and cross wavelet analysis[J]. Chinese Journal of Space Science, 2013, 33(1): 13-19 doi: 10.11728/cjss2013.01.013
    [16]
    CAI X G, WANG W B, EASTES R W, et al. Equatorial ionization anomaly discontinuity observed by GOLD, COSMIC-2, and ground-based GPS receivers' network[J]. Geophysical Research Letters, 2023, 50(10): e2023GL102994 doi: 10.1029/2023GL102994
    [17]
    LUAN X L, WANG P, DOU X K, et al. Interhemispheric asymmetry of the equatorial ionization anomaly in solstices observed by COSMIC during 2007–2012[J]. Journal of Geophysical Research: Space Physics, 2015, 120(4): 3059-3073 doi: 10.1002/2014JA020820
    [18]
    LI B, CUI R F, WENG L B. Thermospheric density response to the QBO signal[J]. Atmosphere, 2023, 14(8): 1317 doi: 10.3390/atmos14081317
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)

    Article Metrics

    Article Views(745) PDF Downloads(81) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return