Volume 44 Issue 2
Apr.  2024
Turn off MathJax
Article Contents
ZHANG Peng, LIU Guanghui, LIU Xin, ZHANG Guang, ZHENG Haibo, DAI Wei, WANG Zhi, NIU Ran, BO Zheng, GAO Ming. Research Progress of Lunar In-situ Water Production Techniques (in Chinese). Chinese Journal of Space Science, 2024, 44(2): 309-317 doi: 10.11728/cjss2024.02.2023-0006
Citation: ZHANG Peng, LIU Guanghui, LIU Xin, ZHANG Guang, ZHENG Haibo, DAI Wei, WANG Zhi, NIU Ran, BO Zheng, GAO Ming. Research Progress of Lunar In-situ Water Production Techniques (in Chinese). Chinese Journal of Space Science, 2024, 44(2): 309-317 doi: 10.11728/cjss2024.02.2023-0006

Research Progress of Lunar In-situ Water Production Techniques

doi: 10.11728/cjss2024.02.2023-0006 cstr: 32142.14.cjss2024.02.2023-0006
  • Received Date: 2023-01-11
  • Accepted Date: 2024-03-13
  • Rev Recd Date: 2023-02-02
  • Available Online: 2023-03-10
  • With the continuous advancement of deep space exploration, lunar exploration will be the first step for mankind to carry out interplanetary exploration and expand living territory. The lunar in-situ resource utilization will be a key technical approach to support manned exploration and long-term survival on the Moon surface. Almost all space powers are carrying out continuous research on lunar in-situ water production technology, and China has also listed lunar surface in-situ water production as one of the key technologies for lunar exploration missions. Lunar in-situ water production can be mainly divided into two methods: polar water ice exploration/extraction and hydrogen reduction of lunar regolith. The water ice resources that had been detected are mainly located in the lunar polar region, with uneven distribution and great difficulty in extraction method. Many different types of polar water ice exploration and extraction schemes have been put forward, but the actual effect needs to be verified by sufficient verification experiments and the lunar in-situ test. Hydrogen reduction of lunar regolith can be used for in-situ water production, and its working conditions are not limited by the region, and its application scope is wide. However, there are some remaining technical limitations such as extreme reaction condition requirements and high energy consumption, which implies urgent demand to make breakthroughs in energy conservation and effective ingredient enrichment. Thus, according to the development strategy deployment of lunar exploration missions and the requirements of in-situ water resource acquisition technology in the future, some suggestions are put forward on developing the key development path of in-situ water resource acquisition technology in the future. Target areas for future exploration missions, in-situ energy acquisition scheme, security and reliability of different technologies will be used as the main basis for different technology selection. It is hoped that this work will provide guidance for in-situ resource utilization in future lunar exploration missions.

     

  • loading
  • [1]
    李春来, 刘建军, 左维, 等. 中国月球探测进展(2011-2020年)[J]. 空间科学学报, 2021, 41(1): 68-75 doi: 10.11728/cjss2021.01.068

    LI Chunlai, LIU Jianjun, ZUO Wei, et al. Progress of China’s lunar exploration (2011−2020)[J]. Chinese Journal of Space Science, 2021, 41(1): 68-75 doi: 10.11728/cjss2021.01.068
    [2]
    XU L, LI H, PEI Z Y, et al. A brief introduction to the international lunar research station program and the interstellar express mission[J]. Chinese Journal of Space Science, 2022, 42(4): 511-513 doi: 10.11728/cjss2022.04.yg28
    [3]
    XU L, PEI Z Y, ZOU Y L, et al. China’s lunar and deep space exploration program for the next decade (2020–2030)[J]. Chinese Journal of Space Science, 2020, 40(5): 615-617 doi: 10.11728/cjss2020.05.615
    [4]
    裴照宇, 刘继忠, 王倩, 等. 月球探测进展与国际月球科研站[J]. 科学通报, 2020, 65(24): 2577-2586 doi: 10.1360/TB-2020-0582

    PEI Zhaoyu, LIU Jizhong, WANG Qian, et al. Overview of lunar exploration and international lunar research station[J]. Chinese Science Bulletin, 2020, 65(24): 2577-2586 doi: 10.1360/TB-2020-0582
    [5]
    李莹辉, 孙野青, 郑慧琼, 等. 中国空间生命科学40年回顾与展望[J]. 空间科学学报, 2021, 41(1): 46-67 doi: 10.11728/cjss2021.01.046

    LI Yinghui, SUN Yeqing, ZHENG Huiqiong, et al. Recent review and prospect of space life science in China for 40 years[J]. Chinese Journal of Space Science, 2021, 41(1): 46-67 doi: 10.11728/cjss2021.01.046
    [6]
    CLARK R N. Detection of adsorbed water and hydroxyl on the moon[J]. Science, 2009, 326(5952): 562-564 doi: 10.1126/science.1178105
    [7]
    COLAPRETE A, SCHULTZ P, HELDMANN J, et al. Detection of water in the LCROSS Ejecta Plume[J]. Science, 2010, 330(6003): 463-468 doi: 10.1126/science.1186986
    [8]
    LI S, LUCEY P G, MILLIKEN R E, et al. Direct evidence of surface exposed water ice in the lunar polar regions[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(36): 8907-8912
    [9]
    HONNIBALL C I, LUCEY P G, LI S, et al. Molecular water detected on the sunlit Moon by SOFIA[J]. Nature Astronomy, 2021, 5(2): 121-127
    [10]
    ZHOU C J, TANG H, LI X Y, et al. Chang’E-5 samples reveal high water content in lunar minerals[J]. Nature Communications, 2022, 13(1): 5336 doi: 10.1038/s41467-022-33095-1
    [11]
    NASA. Thermal Mining of Ices on Cold Solar System Bodies[EB/OL]. (2019-04-11)[2023-01-11]. https://www.nasa.gov/directorates/spacetech/niac/2019_Phase_I_Phase_II/Thermal_Mining_of_Ices_on_Cold_Solar_System_Bodies
    [12]
    SOWERS G F, DREYER C B. Ice mining in lunar permanently shadowed regions[J]. New Space, 2019, 7(4): 235-244 doi: 10.1089/space.2019.0002
    [13]
    BISWAS J, SHERIDAN S, PITCHER C, et al. Searching for potential ice-rich mining sites on the Moon with the Lunar Volatiles Scout[J]. Planetary and Space Science, 2020, 181: 104826 doi: 10.1016/j.pss.2019.104826
    [14]
    季节, 张伟伟, 杨旭, 等. 月球极区水冰采样探测技术综述[J]. 深空探测学报(中英文), 2022, 9(2): 101-113

    JI Jie, ZHANG Weiwei, YANG Xu, et al. Overview of water ice sampling and detection techniques in the lunar polar region[J]. Journal of Deep Space Exploration, 2022, 9(2): 101-113
    [15]
    WILLIAM E L, MARTIN P, GERALD B S, et al. RESOLVE: An International Mission to Search for Volatiles at the Lunar Poles[C]//International Space Exploration Research Institute (ISERI) 2013 Symposium
    [16]
    LI X T, ZHANG G, WANG C, et al. Water harvesting from soils by light-to-heat induced evaporation and capillary water migration[J]. Applied Thermal Engineering, 2020, 175: 115417 doi: 10.1016/j.applthermaleng.2020.115417
    [17]
    HE L C, WANG C, ZHANG G, et al. A novel auger-based system for extraterrestrial in-situ water resource extraction[J]. Icarus, 2021, 367: 114552 doi: 10.1016/j.icarus.2021.114552
    [18]
    LIU Y W, WANG C, PANG Y, et al. Water extraction from icy lunar regolith by drilling-based thermal method in a pilot-scale unit[J]. Acta Astronautica, 2023, 202: 386-399 doi: 10.1016/j.actaastro.2022.11.002
    [19]
    SMITH M, CRAIG D, HERRMANN N, et al. The Artemis Program: an overview of NASA’s activities to return humans to the moon[C]//Proceedings of 2020 IEEE Aerospace Conference. Big Sky: IEEE, 2020
    [20]
    SARGEANT H M, ABERNETHY F A J, ANAND M, et al. Feasibility studies for hydrogen reduction of ilmenite in a static system for use as an ISRU demonstration on the lunar surface[J]. Planetary and Space Science, 2020, 180: 104759 doi: 10.1016/j.pss.2019.104759
    [21]
    LEE K A, ORYSHCHYN L, PAZ A, et al. The ROxygen Project: outpost-scale lunar oxygen production system development at Johnson Space Center[J]. Journal of Aerospace Engineering, 2013, 26(1): 67-73 doi: 10.1061/(ASCE)AS.1943-5525.0000230
    [22]
    SANDERS G B, LARSON W E. Progress made in lunar in situ resource utilization under NASA’s exploration technology and development program[J]. Journal of Aerospace Engineering, 2013, 26(1): 5-17 doi: 10.1061/(ASCE)AS.1943-5525.0000208
    [23]
    KANAMORI H, WATANABE T, AOKI S. Power requirements for the construction and operation of a lunar oxygen plant[J]. Journal of Aerospace Engineering, 2013, 26(1): 160-168 doi: 10.1061/(ASCE)AS.1943-5525.0000180
    [24]
    STEFFEN C J JR, FREEH J E, LINNE D L, et al. System modeling of lunar oxygen production using fission surface power: mass and power requirements[J]. Nuclear Technology, 2009, 166(3): 240-251 doi: 10.13182/NT09-A8838
    [25]
    STEFFEN C J JR, FREEH J E, LINNE D L, et al. System modeling of lunar oxygen production: mass and power requirements[C]//Proceedings of Space Nuclear Conference. Boston: American Nuclear Society, 2007
    [26]
    张育林. 地月空间工程[M]. 北京: 国防工业出版社, 2022

    ZHANG Yulin. Cislunar Space Engineering[M]. Beijing: National Defense Industry Press, 2022
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(1)

    Article Metrics

    Article Views(1160) PDF Downloads(175) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return