| Citation: | ZHANG Peng, LIU Guanghui, LIU Xin, ZHANG Guang, ZHENG Haibo, DAI Wei, WANG Zhi, NIU Ran, BO Zheng, GAO Ming. Research Progress of Lunar In-situ Water Production Techniques (in Chinese). Chinese Journal of Space Science, 2024, 44(2): 309-317 doi: 10.11728/cjss2024.02.2023-0006 |
| [1] |
李春来, 刘建军, 左维, 等. 中国月球探测进展(2011-2020年)[J]. 空间科学学报, 2021, 41(1): 68-75 doi: 10.11728/cjss2021.01.068
LI Chunlai, LIU Jianjun, ZUO Wei, et al. Progress of China’s lunar exploration (2011−2020)[J]. Chinese Journal of Space Science, 2021, 41(1): 68-75 doi: 10.11728/cjss2021.01.068
|
| [2] |
XU L, LI H, PEI Z Y, et al. A brief introduction to the international lunar research station program and the interstellar express mission[J]. Chinese Journal of Space Science, 2022, 42(4): 511-513 doi: 10.11728/cjss2022.04.yg28
|
| [3] |
XU L, PEI Z Y, ZOU Y L, et al. China’s lunar and deep space exploration program for the next decade (2020–2030)[J]. Chinese Journal of Space Science, 2020, 40(5): 615-617 doi: 10.11728/cjss2020.05.615
|
| [4] |
裴照宇, 刘继忠, 王倩, 等. 月球探测进展与国际月球科研站[J]. 科学通报, 2020, 65(24): 2577-2586 doi: 10.1360/TB-2020-0582
PEI Zhaoyu, LIU Jizhong, WANG Qian, et al. Overview of lunar exploration and international lunar research station[J]. Chinese Science Bulletin, 2020, 65(24): 2577-2586 doi: 10.1360/TB-2020-0582
|
| [5] |
李莹辉, 孙野青, 郑慧琼, 等. 中国空间生命科学40年回顾与展望[J]. 空间科学学报, 2021, 41(1): 46-67 doi: 10.11728/cjss2021.01.046
LI Yinghui, SUN Yeqing, ZHENG Huiqiong, et al. Recent review and prospect of space life science in China for 40 years[J]. Chinese Journal of Space Science, 2021, 41(1): 46-67 doi: 10.11728/cjss2021.01.046
|
| [6] |
CLARK R N. Detection of adsorbed water and hydroxyl on the moon[J]. Science, 2009, 326(5952): 562-564 doi: 10.1126/science.1178105
|
| [7] |
COLAPRETE A, SCHULTZ P, HELDMANN J, et al. Detection of water in the LCROSS Ejecta Plume[J]. Science, 2010, 330(6003): 463-468 doi: 10.1126/science.1186986
|
| [8] |
LI S, LUCEY P G, MILLIKEN R E, et al. Direct evidence of surface exposed water ice in the lunar polar regions[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(36): 8907-8912
|
| [9] |
HONNIBALL C I, LUCEY P G, LI S, et al. Molecular water detected on the sunlit Moon by SOFIA[J]. Nature Astronomy, 2021, 5(2): 121-127
|
| [10] |
ZHOU C J, TANG H, LI X Y, et al. Chang’E-5 samples reveal high water content in lunar minerals[J]. Nature Communications, 2022, 13(1): 5336 doi: 10.1038/s41467-022-33095-1
|
| [11] |
NASA. Thermal Mining of Ices on Cold Solar System Bodies[EB/OL]. (2019-04-11)[2023-01-11]. https://www.nasa.gov/directorates/spacetech/niac/2019_Phase_I_Phase_II/Thermal_Mining_of_Ices_on_Cold_Solar_System_Bodies
|
| [12] |
SOWERS G F, DREYER C B. Ice mining in lunar permanently shadowed regions[J]. New Space, 2019, 7(4): 235-244 doi: 10.1089/space.2019.0002
|
| [13] |
BISWAS J, SHERIDAN S, PITCHER C, et al. Searching for potential ice-rich mining sites on the Moon with the Lunar Volatiles Scout[J]. Planetary and Space Science, 2020, 181: 104826 doi: 10.1016/j.pss.2019.104826
|
| [14] |
季节, 张伟伟, 杨旭, 等. 月球极区水冰采样探测技术综述[J]. 深空探测学报(中英文), 2022, 9(2): 101-113
JI Jie, ZHANG Weiwei, YANG Xu, et al. Overview of water ice sampling and detection techniques in the lunar polar region[J]. Journal of Deep Space Exploration, 2022, 9(2): 101-113
|
| [15] |
WILLIAM E L, MARTIN P, GERALD B S, et al. RESOLVE: An International Mission to Search for Volatiles at the Lunar Poles[C]//International Space Exploration Research Institute (ISERI) 2013 Symposium
|
| [16] |
LI X T, ZHANG G, WANG C, et al. Water harvesting from soils by light-to-heat induced evaporation and capillary water migration[J]. Applied Thermal Engineering, 2020, 175: 115417 doi: 10.1016/j.applthermaleng.2020.115417
|
| [17] |
HE L C, WANG C, ZHANG G, et al. A novel auger-based system for extraterrestrial in-situ water resource extraction[J]. Icarus, 2021, 367: 114552 doi: 10.1016/j.icarus.2021.114552
|
| [18] |
LIU Y W, WANG C, PANG Y, et al. Water extraction from icy lunar regolith by drilling-based thermal method in a pilot-scale unit[J]. Acta Astronautica, 2023, 202: 386-399 doi: 10.1016/j.actaastro.2022.11.002
|
| [19] |
SMITH M, CRAIG D, HERRMANN N, et al. The Artemis Program: an overview of NASA’s activities to return humans to the moon[C]//Proceedings of 2020 IEEE Aerospace Conference. Big Sky: IEEE, 2020
|
| [20] |
SARGEANT H M, ABERNETHY F A J, ANAND M, et al. Feasibility studies for hydrogen reduction of ilmenite in a static system for use as an ISRU demonstration on the lunar surface[J]. Planetary and Space Science, 2020, 180: 104759 doi: 10.1016/j.pss.2019.104759
|
| [21] |
LEE K A, ORYSHCHYN L, PAZ A, et al. The ROxygen Project: outpost-scale lunar oxygen production system development at Johnson Space Center[J]. Journal of Aerospace Engineering, 2013, 26(1): 67-73 doi: 10.1061/(ASCE)AS.1943-5525.0000230
|
| [22] |
SANDERS G B, LARSON W E. Progress made in lunar in situ resource utilization under NASA’s exploration technology and development program[J]. Journal of Aerospace Engineering, 2013, 26(1): 5-17 doi: 10.1061/(ASCE)AS.1943-5525.0000208
|
| [23] |
KANAMORI H, WATANABE T, AOKI S. Power requirements for the construction and operation of a lunar oxygen plant[J]. Journal of Aerospace Engineering, 2013, 26(1): 160-168 doi: 10.1061/(ASCE)AS.1943-5525.0000180
|
| [24] |
STEFFEN C J JR, FREEH J E, LINNE D L, et al. System modeling of lunar oxygen production using fission surface power: mass and power requirements[J]. Nuclear Technology, 2009, 166(3): 240-251 doi: 10.13182/NT09-A8838
|
| [25] |
STEFFEN C J JR, FREEH J E, LINNE D L, et al. System modeling of lunar oxygen production: mass and power requirements[C]//Proceedings of Space Nuclear Conference. Boston: American Nuclear Society, 2007
|
| [26] |
张育林. 地月空间工程[M]. 北京: 国防工业出版社, 2022
ZHANG Yulin. Cislunar Space Engineering[M]. Beijing: National Defense Industry Press, 2022
|