Citation: | ZHOU Jun, TONG Jizhou, LI Yunlong, FANG Shaofeng. Study of Sample Imbalance in Deep Learning Modeling of Solar Flare Forecasting (in Chinese). Chinese Journal of Space Science, 2024, 44(2): 241-250 doi: 10.11728/cjss2024.02.2023-0028 |
[1] |
BLOOMFIELD D S, HIGGINS P A, MCATEER R T J, et al. Toward reliable benchmarking of solar flare forecasting methods[J]. The Astrophysical Journal Letters, 2012, 747(2): L41 doi: 10.1088/2041-8205/747/2/L41
|
[2] |
YUAN Y, SHIH F Y, JING J, et al. Automated flare forecasting using a statistical learning technique[J]. Research in Astronomy and Astrophysics, 2010, 10(8): 785-796 doi: 10.1088/1674-4527/10/8/008
|
[3] |
QAHWAJI R, COLAK T. Automatic short-term solar flare prediction using machine learning and sunspot associations[J]. Solar Physics, 2007, 241(1): 195-211 doi: 10.1007/s11207-006-0272-5
|
[4] |
YU D R, HUANG X, WANG H N, et al. Short-term solar flare level prediction using a Bayesian network approach[J]. The Astrophysical Journal, 2010, 710(1): 869-877 doi: 10.1088/0004-637X/710/1/869
|
[5] |
HAZRA S, SARDAR G, CHOWDHURY P. Distinguishing between flaring and nonflaring active regions[J]. Astronomy & Astrophysics, 2020, 639: A44
|
[6] |
COLAK T, QAHWAJI R. Automated Solar Activity Prediction: A hybrid computer platform using machine learning and solar imaging for automated prediction of solar flares[J]. Space Weather, 2009, 7(6): S06001
|
[7] |
PARK E, MOON Y J, SHIN S, et al. Application of the deep convolutional neural network to the forecast of solar flare occurrence using full-disk solar magnetograms[J]. The Astrophysical Journal, 2018, 869(2): 91 doi: 10.3847/1538-4357/aaed40
|
[8] |
何欣燃, 钟秋珍, 崔延美, 等. 基于长短期记忆神经网络的太阳耀斑短期预报[J]. 空间科学学报, 2022, 42(5): 862-872 doi: 10.11728/cjss2022.05.210315028
HE Xinran, ZHONG Qiuzhen, CUI Yanmei, et al. Solar flare short-term forecast model based on long and short-term memory neural network[J]. Chinese Journal of Space Science, 2022, 42(5): 862-872 doi: 10.11728/cjss2022.05.210315028
|
[9] |
郭大蕾, 张振, 朱凌锋, 等. 太阳活动区EUV图像的生成式模型耀斑分级与预报[J]. 空间科学学报, 2023, 43(1): 60-67. DOI: 10.11728/cjss2023.01.220214015
GUO Dalei, ZHANG Zhen, ZHU Lingfeng, et al. Generative model-based of flare hierarchic recognition and forecast of extreme ultraviolet images in solar active region[J]. Chinese Journal of Space Science, 2023, 43(1): 60-67. DOI: 10.11728/cjss2023.01.220214015
|
[10] |
HUANG X, WANG H, XU L, et al. Deep learning based solar flare forecasting model. I. results for line-of-sight magnetograms[J]. The Astrophysical Journal, 2018, 856(1): 7 doi: 10.3847/1538-4357/aaae00
|
[11] |
ZHENG Y F, LI X B, WANG X S. Solar flare prediction with the hybrid deep convolutional neural network[J]. The Astrophysical Journal, 2019, 885(1): 73 doi: 10.3847/1538-4357/ab46bd
|
[12] |
LI X B, ZHENG Y F, WANG X S, et al. Predicting solar flares using a novel deep convolutional neural network[J]. The Astrophysical Journal, 2020, 891(1): 10 doi: 10.3847/1538-4357/ab6d04
|
[13] |
WAN J, FU J F, LIU J F, et al. Class imbalance problem in short-term solar flare prediction[J]. Research in Astronomy and Astrophysics, 2021, 21(9): 237 doi: 10.1088/1674-4527/21/9/237
|
[14] |
DENG Z, WANG F, DENG H, et al. Fine-grained solar flare forecasting based on the hybrid convolutional neural networks[J]. The Astrophysical Journal, 2021, 922(2): 232 doi: 10.3847/1538-4357/ac2b2b
|
[15] |
DESHMUKH V, FLYER N, VAN DER SANDE K, et al. Decreasing false-alarm rates in CNN-based solar flare prediction using SDO/HMI data[J]. The Astrophysical Journal Supplement Series, 2022, 260(1): 9 doi: 10.3847/1538-4365/ac5b0c
|
[16] |
KANEDA K, WADA Y, IIDA T, et al. Flare transformer: solar flare prediction using magnetograms and sunspot physical features[C]//Proceedings of the 16th Asian Conference on Computer Vision. Macao, China: Springer, 2022: 1488-1503
|
[17] |
WANG Ting. Statistical Analysis of Solar Flares During 22, 23 and 24 Solar Cycles[D]. Beijing: North China Electric Power University, 2021
|
[18] |
KANG B Y, XIE S N, ROHRBACH M, et al. Decoupling representation and classifier for long-tailed recognition[C]//8th International Conference on Learning Representations. Addis Ababa, Ethiopia: OpenReview. net, 2020
|
[19] |
WANG J F, LUKASIEWICZ T, HU X L, et al. RSG: a simple but effective module for learning imbalanced datasets[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Nashville, TN, USA: IEEE, 2021: 3783-3792
|
[20] |
ZHANG H Y, CISSE M, DAUPHIN Y N, et al. mixup: Beyond empirical risk minimization[C]//6th International Conference on Learning Representations. Vancouver, BC, Canada: OpenReview. net, 2018: 1-13
|
[21] |
VERMA V, LAMB A, BECKHAM C, et al. Manifold mixup: Better representations by interpolating hidden states[C]//Proceedings of the 36th International Conference on Machine Learning. Long Beach: PMLR, 2019: 6438-6447
|
[22] |
PARK S, LIM J, JEON Y, et al. Influence-balanced loss for imbalanced visual classification[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Montreal, QC, Canada: IEEE, 2021: 715-724
|
[23] |
CAO K D, WEI C, GAIDON A, et al. Learning imbalanced datasets with label-distribution-aware margin loss[C]//Proceedings of the 33rd International Conference on Neural Information Processing Systems. Red Hook, NY, USA: Curran Associates Inc., 2019: 140
|