Volume 44 Issue 2
Apr.  2024
Turn off MathJax
Article Contents
WANG Zidong, ZHOU Bin. Simulation and Experimental Validation of Charge-driven Extreme Ultraviolet Photoelectric Effect (in Chinese). Chinese Journal of Space Science, 2024, 44(2): 368-378 doi: 10.11728/cjss2024.02.2023-0038
Citation: WANG Zidong, ZHOU Bin. Simulation and Experimental Validation of Charge-driven Extreme Ultraviolet Photoelectric Effect (in Chinese). Chinese Journal of Space Science, 2024, 44(2): 368-378 doi: 10.11728/cjss2024.02.2023-0038

Simulation and Experimental Validation of Charge-driven Extreme Ultraviolet Photoelectric Effect

doi: 10.11728/cjss2024.02.2023-0038 cstr: 32142.14.cjss2024.02.2023-0038
  • Received Date: 2023-03-20
  • Rev Recd Date: 2023-05-25
  • Available Online: 2023-09-01
  • The test masses of the inertial sensor is the core of the precision gravity measurement system. The surface of test masses accumulates charges due to continuous injection of high-energy particles from space, which generates stray noise under the action of the internal electromagnetic field of the sensor and affects the precision gravity measurement results. According to the principle of photoelectric effect, use UV LED to generate extreme ultraviolet light to irradiate the electrodes of an inertial sensor and the surface of the test masses, and applying an appropriate electric field between the electrodes, it is possible to change the charge amount of the test masses without external forces and under non-contact conditions. Based on the simplified electrode model of the parallel plate capacitor, this paper carried out theoretical modeling and simulation of the extreme ultraviolet charge driving process. Based on this, a set of charge driving verification test system was designed and constructed, and experiments were carried out on the effects of light power and bias voltage on the charging and discharging rates and AC charge driving. The experiment proved that the charge-discharge rate is proportional to the extreme ultraviolet light power, and its quantum yield changes with the electric field strength between the plates. Ultimately, a stable control of the test masses discharge rate between 0.31 pC⋅s–1 and 0.76 pC⋅s–1 and charge rate between –0.05 pC⋅s–1 and –0.17 pC⋅s–1 can be achieved. The theoretical model of charge-discharge rate proposed in this article for the test masses is consistent with the results of ground experiments, which can strongly support the development of charge management and control systems.

     

  • loading
  • [1]
    ARAÚJO H M, WASS P, SHAUL D, et al. Detailed calculation of test-mass charging in the LISA mission[J]. Astroparticle Physics, 2005, 22(5/6): 451-469
    [2]
    VOCCA H, GRIMANI C, AMICO P, et al. Simulation of the charging process of the LISA test masses due to solar flares[J]. Classical and Quantum Gravity, 2004, 21(5): S665-S670 doi: 10.1088/0264-9381/21/5/041
    [3]
    康伟东, 李得天, 雷军刚, 等. 引力参考传感器检测质量块电荷积累与控制[J]. 真空与低温, 2020, 26(2): 158-164 doi: 10.3969/j.issn.1006-7086.2020.02.012

    KANG Weidong, LI Detian, LEI Jungang, et al. Gravity reference sensor test mass charge accumulation and control[J]. Vacuum and Cryogenics, 2020, 26(2): 158-164 doi: 10.3969/j.issn.1006-7086.2020.02.012
    [4]
    EWING B E. Charge management in LISA pathfinder: the continuous discharging experiment[Z]. Trento, Italy: Universita di Trento, 2017
    [5]
    ZIEGLER T, BERGNER P, HECHENBLAIKNER G, et al. Modeling and performance of contact-free discharge systems for space inertial sensors[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(2): 1493-1510 doi: 10.1109/TAES.2014.120661
    [6]
    陈浩. 精密扭秤实验中的电荷管理研究[D]. 武汉: 华中科技大学, 2013

    CHEN Hao. The charge management research in the torsion pendulum[D]. Wuhan: Huazhong University of Science and Technology, 2013
    [7]
    PAIL R, BRUINSMA S, MIGLIACCIO F, et al. First GOCE gravity field models derived by three different approaches[J]. Journal of Geodesy, 2011, 85(11): 819-843 doi: 10.1007/s00190-011-0467-x
    [8]
    WILLEMENOT E, TOUBOUL P. On-ground investigation of space accelerometers noise with an electrostatic torsion pendulum[J]. Review of Scientific Instruments, 2000, 71(1): 302-309 doi: 10.1063/1.1150197
    [9]
    LI J, BENCZE W, DEBRA D, et al. On-orbit performance of Gravity Probe B drag-free translation control and orbit determination[J]. Advances in Space Research, 2007, 40(1): 1-10 doi: 10.1016/j.asr.2007.03.009
    [10]
    SARAF S, BUCHMAN S, BALAKRISHNAN K, et al. Ground testing and flight demonstration of charge management of insulated test masses using UV-LED electron photoemission[J]. Classical and Quantum Gravity, 2016, 33(24): 245004 doi: 10.1088/0264-9381/33/24/245004
    [11]
    SUN K X, LEINDECKER N, HIGUCHI S, et al. UV LED operation lifetime and radiation hardness qualification for space flights[J]. Journal of Physics: Conference Series, 2009, 154: 012028 doi: 10.1088/1742-6596/154/1/012028
    [12]
    HOLLINGTON D, BAIRD J T, SUMNER T J, et al. Characterising and testing deep UV LEDs for use in space applications[J]. Classical and Quantum Gravity, 2015, 32(23): 235020 doi: 10.1088/0264-9381/32/23/235020
    [13]
    HOLLINGTON D, BAIRD J T, SUMNER T J, et al. Lifetime testing UV LEDs for use in the LISA charge management system[J]. Classical and Quantum Gravity, 2017, 34(20): 205009 doi: 10.1088/1361-6382/aa87eb
    [14]
    HECHENBLAIKNER G, ZIEGLER T, BISWAS I, et al. Energy distribution and quantum yield for photoemission from air-contaminated gold surfaces under ultraviolet illumination close to the threshold[J]. Journal of Applied Physics, 2012, 111(12): 124914 doi: 10.1063/1.4730638
    [15]
    WASS P J, HOLLINGTON D, SUMNER T J, et al. Effective decrease of photoelectric emission threshold from gold plated surfaces[J]. Review of Scientific Instruments, 2019, 90(6): 064501 doi: 10.1063/1.5088135
    [16]
    INCHAUSPÉ H, OLATUNDE T, APPLE S, et al. Numerical modeling and experimental demonstration of pulsed charge control for the space inertial sensor used in LISA[J]. Physical Review D, 2020, 102(4): 042002 doi: 10.1103/PhysRevD.102.042002
    [17]
    HOLLINGTON D. The Charge Management System for LISA and LISA Pathfinder[D]. London: Imperial College London, 2011
    [18]
    张琦锋, 侯士敏, 邵庆益, 等. BaO半导体薄膜在外加垂直表面电场作用下的近紫外光吸收增强现象研究[J]. 物理学报, 2000, 49(10): 2089-2093 doi: 10.3321/j.issn:1000-3290.2000.10.037

    ZHANG Qifeng, HOU Shimin, SHAO Qingyi, et al. Study of enhanced photoabsorption of BaO thin films in the near-ultraviolet band with applied vertical electric field on the surface[J]. Acta Physica Sinica, 2000, 49(10): 2089-2093 doi: 10.3321/j.issn:1000-3290.2000.10.037
    [19]
    康伟东, 李得天, 李刚, 等. 引力参考传感器检测质量块电荷UV光调控技术研究[J]. 真空与低温, 2021, 27(4): 407-410 doi: 10.3969/j.issn.1006-7086.2021.04.015

    KANG Weidong, LI Detian, LI Gang, et al. Research on UV light control technology for detecting mass charge with gravitational reference sensor[J]. Vacuum and Cryogenics, 2021, 27(4): 407-410 doi: 10.3969/j.issn.1006-7086.2021.04.015
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(1)

    Article Metrics

    Article Views(391) PDF Downloads(70) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return