Volume 44 Issue 2
Apr.  2024
Turn off MathJax
Article Contents
YAN Shuainan, LI Xuebao, DONG Liang, HUANG Wengeng, WANG Jing, YAN Pengchao, LOU Hengrui, HUANG Xusheng, LI Zhe, ZHENG Yanfang. Application of F10.7 Index Prediction Model Based on BiLSTM-attention and Chinese Autonomous Dataset (in Chinese). Chinese Journal of Space Science, 2024, 44(2): 251-261 doi: 10.11728/cjss2024.02.2023-0040
Citation: YAN Shuainan, LI Xuebao, DONG Liang, HUANG Wengeng, WANG Jing, YAN Pengchao, LOU Hengrui, HUANG Xusheng, LI Zhe, ZHENG Yanfang. Application of F10.7 Index Prediction Model Based on BiLSTM-attention and Chinese Autonomous Dataset (in Chinese). Chinese Journal of Space Science, 2024, 44(2): 251-261 doi: 10.11728/cjss2024.02.2023-0040

Application of F10.7 Index Prediction Model Based on BiLSTM-attention and Chinese Autonomous Dataset

doi: 10.11728/cjss2024.02.2023-0040 cstr: 32142.14.cjss2024.02.2023-0040
  • Received Date: 2023-03-25
  • Accepted Date: 2024-03-13
  • Rev Recd Date: 2023-05-10
  • Available Online: 2023-07-27
  • The F10.7 index is an important indicator of solar activity. Accurate predictions of the F10.7 index can help prevent and mitigate the effects of solar activity on areas such as radio communications, navigation and satellite communications. Based on the properties of the F10.7 radio flux, the prediction model of F10.7 based on BiLSTM-Attention is proposed by incorporating an Attention mechanism on the Bidirectional Long Short-Term Memory Network (BiLSTM). The Mean Absolute Error (MAE) on the Canadian DRAO dataset is 5.38, the Mean Absolute Percentage Error (MAPE) is controlled to within 5% and the correlation coefficient (R) reaches 0.987. It has superior prediction performance compared with other RNN models in both short-term and medium-term prediction. A Conversion Average Calibration (CAC) method is proposed to preprocess the F10.7 data set observed by the Langfang L&S telescope in China. The processed data has high correlation with the DRAO dataset. Based on this dataset the forecasting effectiveness of the RNN series models is compared and analyzed. The experimental results show that both BiLSTM-Attention and BiLSTM models have significant advantages in predicting the F10.7 index and show excellent predictive performance and good stability. The BiLSTM-Attention model has the highest prediction accuracy when forecasting future first-day data, with MAE and MAPE of 11.10 and 8.66, respectively, and the MAPE is always within 15% in the short- and medium-term forecasts. This shows that the proposed model has high generalization ability and can effectively predict the F10.7 data set of DRAO and L&S.

     

  • loading
  • [1]
    马瑞平, 纪巧, 徐寄遥. 太阳F10.7指数准27天振荡的小波分析[J]. 空间科学学报, 2007, 27(2): 89-95 doi: 10.11728/cjss2007.02.089

    MA Ruiping, JI Qiao, XU Jiyao. Wavelet analysis of quasi-27-day oscillations in the solar index F10.7[J]. Chinese Journal of Space Science, 2007, 27(2): 89-95 doi: 10.11728/cjss2007.02.089
    [2]
    刘四清, 钟秋珍, 温靖, 等. 太阳10.7 cm射电流量中期预报模型研究(Ⅰ)[J]. 空间科学学报, 2010, 30(1): 1-8 doi: 10.11728/cjss2010.01.001

    LIU Siqing, ZHONG Qiuzhen, WEN Jing, et al. Modeling research of 10.7 cm solar radio flux 27-day forecast (I)[J]. Chinese Journal of Space Science, 2010, 30(1): 1-8 doi: 10.11728/cjss2010.01.001
    [3]
    温靖, 钟秋珍, 刘四清. 太阳10.7 cm射电流量中期预报模型研究(Ⅱ)[J]. 空间科学学报, 2010, 30(3): 198-204 doi: 10.11728/cjss2010.03.198

    WEN Jing, ZHONG Qiuzhen, LIU Siqing. Model research of 10.7cm solar radio flux 27-day forecast (II)[J]. Chinese Journal of Space Science, 2010, 30(3): 198-204 doi: 10.11728/cjss2010.03.198
    [4]
    WANG H B, XIONG J N, ZHAO C Y. The mid-term forecast method of solar radiation index[J]. Chinese Astronomy and Astrophysics, 2015, 39(2): 198-211 doi: 10.1016/j.chinastron.2015.04.010
    [5]
    高扬, 吕建永, 王明, 等. 基于深度学习的太阳F10.7辐射通量的短期预报研究[J]. 天文学报, 2022, 63(1): 11

    GAO Yang, LV Jianyong, WANG Ming, et al. Short-term prediction of solar F10.7 radiation flux based on deep learning[J]. Acta Astronomica Sinica, 2022, 63(1): 11
    [6]
    VALDÉS J J, NIKOLIĆ L, TAPPING K. Machine learning approaches for predicting the 10.7 cm radio flux from solar magnetogram data[C]//2019 International Joint Conference on Neural Networks (IJCNN). Budapest, Hungary: IEEE, 2019
    [7]
    HUANG C, LIU D D, WANG J S. Forecast daily indices of solar activity, F10.7, using support vector regression method[J]. Research in Astronomy and Astrophysics, 2009, 9(6): 694 doi: 10.1088/1674-4527/9/6/008
    [8]
    LUO J Q, ZHU H B, JIANG Y, et al. The 10.7-cm radio flux multistep forecasting based on empirical mode decomposition and back propagation neural network[J]. IEEJ Transactions on Electrical and Electronic Engineering, 2020, 15(4): 584-592 doi: 10.1002/tee.23092
    [9]
    ABRAHAM S, ANIYAN A K, KEMBHAVI A K, et al. Detection of bars in galaxies using a deep convolutional neural network[J]. Monthly Notices of the Royal Astronomical Society, 2018, 477(1): 894-903 doi: 10.1093/mnras/sty627
    [10]
    杨旭, 朱亚光, 杨升高, 等. LSTM神经网络在太阳F10.7射电流量中期预报中的应用[J]. 空间科学学报, 2020, 40(2): 176-185 doi: 10.11728/cjss2020.02.176

    YANG Xu, ZHU Yaguang, YANG Shenggao, et al. Application of LSTM neural network in F10.7 solar radio flux mid-term forecast[J]. Chinese Journal of Space Science, 2020, 40(2): 176-185 doi: 10.11728/cjss2020.02.176
    [11]
    LUO J Q, ZHU L C, ZHU H B, et al. A new approach for the 10.7-cm solar radio flux forecasting: based on empirical mode decomposition and LSTM[J]. International Journal of Computational Intelligence Systems, 2021, 14(1): 1742-1752 doi: 10.2991/ijcis.d.210602.001
    [12]
    CINAR Y G, MIRISAEE H, GOSWAMI P, et al. Period-aware content attention RNNs for time series forecasting with missing values[J]. Neurocomputing, 2018, 312: 177-186 doi: 10.1016/j.neucom.2018.05.090
    [13]
    LIU H, LIU C, WANG J T L, et al. Predicting solar flares using a long short-term memory network[J]. The Astrophysical Journal, 2019, 877(2): 121 doi: 10.3847/1538-4357/ab1b3c
    [14]
    ZHANG W T, ZHAO X H, FENG X S, et al. Predicting the daily 10.7-cm solar radio flux using the long short-term memory method[J]. Universe, 2022, 8(1): 30 doi: 10.3390/universe8010030
    [15]
    LUO J Q, ZHU L C, ZHANG K L, et al. Forecasting the 10.7-cm solar radio flux using deep CNN-LSTM neural networks[J]. Processes, 2022, 10(2): 262 doi: 10.3390/pr10020262
    [16]
    STEVENSON E, RODRIGUEZ-FERNANDEZ V, MINISCI E, et al. A deep learning approach to solar radio flux forecasting[J]. Acta Astronautica, 2022 , 193: 595-606
    [17]
    ZHENG Y F, LI X B, YAN S N, et al. Multiclass solar flare forecasting models with different deep learning algorithms[J]. Monthly Notices of the Royal Astronomical Society, 2023, 521(4): 5384-5399 doi: 10.1093/mnras/stad839
    [18]
    SCHUSTER M, PALIWAL K K. Bidirectional recurrent neural networks[J]. IEEE Transactions on Signal Processing, 1997, 45(11): 2673-2681 doi: 10.1109/78.650093
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(3)

    Article Metrics

    Article Views(788) PDF Downloads(110) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return