| Citation: | YAN Shuainan, LI Xuebao, DONG Liang, HUANG Wengeng, WANG Jing, YAN Pengchao, LOU Hengrui, HUANG Xusheng, LI Zhe, ZHENG Yanfang. Application of F10.7 Index Prediction Model Based on BiLSTM-attention and Chinese Autonomous Dataset (in Chinese). Chinese Journal of Space Science, 2024, 44(2): 251-261 doi: 10.11728/cjss2024.02.2023-0040 |
| [1] |
马瑞平, 纪巧, 徐寄遥. 太阳F10.7指数准27天振荡的小波分析[J]. 空间科学学报, 2007, 27(2): 89-95 doi: 10.11728/cjss2007.02.089
MA Ruiping, JI Qiao, XU Jiyao. Wavelet analysis of quasi-27-day oscillations in the solar index F10.7[J]. Chinese Journal of Space Science, 2007, 27(2): 89-95 doi: 10.11728/cjss2007.02.089
|
| [2] |
刘四清, 钟秋珍, 温靖, 等. 太阳10.7 cm射电流量中期预报模型研究(Ⅰ)[J]. 空间科学学报, 2010, 30(1): 1-8 doi: 10.11728/cjss2010.01.001
LIU Siqing, ZHONG Qiuzhen, WEN Jing, et al. Modeling research of 10.7 cm solar radio flux 27-day forecast (I)[J]. Chinese Journal of Space Science, 2010, 30(1): 1-8 doi: 10.11728/cjss2010.01.001
|
| [3] |
温靖, 钟秋珍, 刘四清. 太阳10.7 cm射电流量中期预报模型研究(Ⅱ)[J]. 空间科学学报, 2010, 30(3): 198-204 doi: 10.11728/cjss2010.03.198
WEN Jing, ZHONG Qiuzhen, LIU Siqing. Model research of 10.7cm solar radio flux 27-day forecast (II)[J]. Chinese Journal of Space Science, 2010, 30(3): 198-204 doi: 10.11728/cjss2010.03.198
|
| [4] |
WANG H B, XIONG J N, ZHAO C Y. The mid-term forecast method of solar radiation index[J]. Chinese Astronomy and Astrophysics, 2015, 39(2): 198-211 doi: 10.1016/j.chinastron.2015.04.010
|
| [5] |
高扬, 吕建永, 王明, 等. 基于深度学习的太阳F10.7辐射通量的短期预报研究[J]. 天文学报, 2022, 63(1): 11
GAO Yang, LV Jianyong, WANG Ming, et al. Short-term prediction of solar F10.7 radiation flux based on deep learning[J]. Acta Astronomica Sinica, 2022, 63(1): 11
|
| [6] |
VALDÉS J J, NIKOLIĆ L, TAPPING K. Machine learning approaches for predicting the 10.7 cm radio flux from solar magnetogram data[C]//2019 International Joint Conference on Neural Networks (IJCNN). Budapest, Hungary: IEEE, 2019
|
| [7] |
HUANG C, LIU D D, WANG J S. Forecast daily indices of solar activity, F10.7, using support vector regression method[J]. Research in Astronomy and Astrophysics, 2009, 9(6): 694 doi: 10.1088/1674-4527/9/6/008
|
| [8] |
LUO J Q, ZHU H B, JIANG Y, et al. The 10.7-cm radio flux multistep forecasting based on empirical mode decomposition and back propagation neural network[J]. IEEJ Transactions on Electrical and Electronic Engineering, 2020, 15(4): 584-592 doi: 10.1002/tee.23092
|
| [9] |
ABRAHAM S, ANIYAN A K, KEMBHAVI A K, et al. Detection of bars in galaxies using a deep convolutional neural network[J]. Monthly Notices of the Royal Astronomical Society, 2018, 477(1): 894-903 doi: 10.1093/mnras/sty627
|
| [10] |
杨旭, 朱亚光, 杨升高, 等. LSTM神经网络在太阳F10.7射电流量中期预报中的应用[J]. 空间科学学报, 2020, 40(2): 176-185 doi: 10.11728/cjss2020.02.176
YANG Xu, ZHU Yaguang, YANG Shenggao, et al. Application of LSTM neural network in F10.7 solar radio flux mid-term forecast[J]. Chinese Journal of Space Science, 2020, 40(2): 176-185 doi: 10.11728/cjss2020.02.176
|
| [11] |
LUO J Q, ZHU L C, ZHU H B, et al. A new approach for the 10.7-cm solar radio flux forecasting: based on empirical mode decomposition and LSTM[J]. International Journal of Computational Intelligence Systems, 2021, 14(1): 1742-1752 doi: 10.2991/ijcis.d.210602.001
|
| [12] |
CINAR Y G, MIRISAEE H, GOSWAMI P, et al. Period-aware content attention RNNs for time series forecasting with missing values[J]. Neurocomputing, 2018, 312: 177-186 doi: 10.1016/j.neucom.2018.05.090
|
| [13] |
LIU H, LIU C, WANG J T L, et al. Predicting solar flares using a long short-term memory network[J]. The Astrophysical Journal, 2019, 877(2): 121 doi: 10.3847/1538-4357/ab1b3c
|
| [14] |
ZHANG W T, ZHAO X H, FENG X S, et al. Predicting the daily 10.7-cm solar radio flux using the long short-term memory method[J]. Universe, 2022, 8(1): 30 doi: 10.3390/universe8010030
|
| [15] |
LUO J Q, ZHU L C, ZHANG K L, et al. Forecasting the 10.7-cm solar radio flux using deep CNN-LSTM neural networks[J]. Processes, 2022, 10(2): 262 doi: 10.3390/pr10020262
|
| [16] |
STEVENSON E, RODRIGUEZ-FERNANDEZ V, MINISCI E, et al. A deep learning approach to solar radio flux forecasting[J]. Acta Astronautica, 2022 , 193: 595-606
|
| [17] |
ZHENG Y F, LI X B, YAN S N, et al. Multiclass solar flare forecasting models with different deep learning algorithms[J]. Monthly Notices of the Royal Astronomical Society, 2023, 521(4): 5384-5399 doi: 10.1093/mnras/stad839
|
| [18] |
SCHUSTER M, PALIWAL K K. Bidirectional recurrent neural networks[J]. IEEE Transactions on Signal Processing, 1997, 45(11): 2673-2681 doi: 10.1109/78.650093
|