Volume 44 Issue 2
Apr.  2024
Turn off MathJax
Article Contents
WU Zishuai, ZHANG Chengdong, LEI Zhibo, ZHAI Zaiteng, YAO Jian. Integrated Thermal Control System for Space Platform and Fractionated Payload (in Chinese). Chinese Journal of Space Science, 2024, 44(2): 379-385 doi: 10.11728/cjss2024.02.2023-0041
Citation: WU Zishuai, ZHANG Chengdong, LEI Zhibo, ZHAI Zaiteng, YAO Jian. Integrated Thermal Control System for Space Platform and Fractionated Payload (in Chinese). Chinese Journal of Space Science, 2024, 44(2): 379-385 doi: 10.11728/cjss2024.02.2023-0041

Integrated Thermal Control System for Space Platform and Fractionated Payload

doi: 10.11728/cjss2024.02.2023-0041 cstr: 32142.14.cjss2024.02.2023-0041
  • Received Date: 2023-03-28
  • Accepted Date: 2024-03-13
  • Rev Recd Date: 2023-05-07
  • Available Online: 2023-07-26
  • With the development of space exploration, combined spacecraft which can implement more complicated targets through fractionated payload or part of the spacecraft separated from the space platform have been in urgent need. Space platform provides carriage service for the fractionated payload or part of the spacecraft before separation. Under the hypothetical space platform and fractionated payload conditions, the paper proposed an integrated thermal control system for it, simultaneously, simulations of several cases such as thermal control efficacy for the payload during storage stage, the thermal impact between the space platform and the fractionated payload, and the temperature variation of the platform during separation were carried out. Moreover, the steady-state simulations and thermal mathematic model were verified through thermal vacuum test. Thermal simulations and thermal vacuum tests generate the scheme characters of the temperature and thermal fluxes between the platform and fractioned payload. The whole figures of the simulations and test results proved the rationality and effectiveness of the system, meanwhile, verified the feasibility of the thermal vacuum test method for the thermal coupled space platform and fractioned payload while would be independent during thermal vacuum test, which can be as a reference of such spacecraft cases.

     

  • loading
  • [1]
    刘赛, 徐世杰. 组合式航天器分离后姿态控制器设计[J]. 空间控制技术与应用, 2009, 35(2): 35-37,45 doi: 10.3969/j.issn.1674-1579.2009.02.007

    LIU Sai, XU Shiji. Attitude controller design for combined spacecraft after separation[J]. Aerospace Control and Application, 2009, 35(2): 35-37,45 doi: 10.3969/j.issn.1674-1579.2009.02.007
    [2]
    刘永健, 谭春林, 刘育强. 空间平台能力发展趋势分析[J]. 航天器工程, 2011, 20(2): 72-77 doi: 10.3969/j.issn.1673-8748.2011.02.013

    LIU Yongjian, TAN Chunlin, LIU Yuqiang. Analysis of space platform capability development tendency[J]. Spacecraft Engineering, 2011, 20(2): 72-77 doi: 10.3969/j.issn.1673-8748.2011.02.013
    [3]
    FOSNESS E R, BUCKLEY S J, GAMMILL W F. Deployment and release devices efforts at the air force research laboratory space vehicles directorate[C]//Proceedings of AIAA Space 2001 Conference and Exposition. Albuquerque: AIAA, 2001: 1-6
    [4]
    FRAUENHOLZ R B, BHAT R S, CHESLEY S R C, et al. Deep impact navigation system performance[J]. Journal of Spacecraft and Rockets, 2008, 45(1): 39-56 doi: 10.2514/1.24310
    [5]
    舒燕, 李志. 在轨释放、分离载荷动力学仿真研究[J]. 航天器环境工程, 2012, 29(1): 18-22 doi: 10.3969/j.issn.1673-1379.2012.01.004

    SHU Yan, LI Zhi. Dynamics simulation of on-orbit release and separation of payload[J]. Spacecraft Environment Engineering, 2012, 29(1): 18-22 doi: 10.3969/j.issn.1673-1379.2012.01.004
    [6]
    张伟, 方宝东, 成玫, 等. 空间飞行器分离式构型设计[J]. 上海航天, 2013, 30(1): 1-7,23

    ZHANG Wei, FANG Baodong, CHENG Mei, et al. Design of separation configuration for spacecraft[J]. Aerospace Shanghai, 2013, 30(1): 1-7,23
    [7]
    宁献文, 蒋凡, 张栋, 等. 月球无人采样返回探测器一体化热管理方案[J]. 航天器环境工程, 2017, 34(6): 598-603 doi: 10.3969/j.issn.1673-1379.2017.06.005

    NING Xianwen, JIANG Fan, ZHANG Dong, et al. An integrated thermal management scheme for lunar robotic sampling and return probe[J]. Spacecraft Environment Engineering, 2017, 34(6): 598-603 doi: 10.3969/j.issn.1673-1379.2017.06.005
    [8]
    (宁献文, 苏生, 陈阳, 等. 月地高速再入返回器热控设计及实现[J]. 中国科学: 技术科学, 2015, 45(2): 145-150 doi: 10.1360/N092014-00475

    NING Xianwen, SU Sheng, CHEN Yang, et al. Design and implementation of circumlunar return and reentry spacecraft thermal control system[J]. Scientia Sinica Technologica, 2015, 45(2): 145-150 doi: 10.1360/N092014-00475
    [9]
    刘自军, 向艳超, 斯东波, 等. 嫦娥三号探测器热控系统设计与验证[J]. 中国科学: 技术科学, 2014, 44(4): 353-360 doi: 10.1360/092014-40

    LIU Zijun, XIANG Yanchao, SI Dongbo, et al. Design and verification of thermal control system for Chang'E-3 probe[J]. Scientia Sinica:Technologica, 2014, 44(4): 353-360 doi: 10.1360/092014-40
    [10]
    陈江平, 黄家荣, 范宇峰, 等. “阿波罗”登月飞行器热控系统方案概述[J]. 载人航天, 2012, 18(1): 40-47 doi: 10.3969/j.issn.1674-5825.2012.01.008

    CHEN Jiangping, HUANG Jiarong, FAN Yufeng, et al. An overview on thermal control system design of Apollo[J]. Manned Spaceflight, 2012, 18(1): 40-47 doi: 10.3969/j.issn.1674-5825.2012.01.008
    [11]
    苗建印, 钟奇, 赵啟伟, 等. 航天器热控制技术[M]. 北京: 北京理工大学出版社, 2018: 317-326

    MIAO Jianyin, ZHONG Qi, ZHAO Qiwei, et al. Spacecraft Thermal Control Technology[M]. Beijing: Beijing Institute of Technology Press, 2018: 317-326
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(2)

    Article Metrics

    Article Views(480) PDF Downloads(57) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return