Volume 44 Issue 2
Apr.  2024
Turn off MathJax
Article Contents
ZHANG Yiteng, LI Lei, XIE Lianghai, GOU Xiaochen, FENG Yongyong. Distribution and Characteristics of Martian Precipitating H-ENA (in Chinese). Chinese Journal of Space Science, 2024, 44(2): 299-308 doi: 10.11728/cjss2024.02.2023-0044
Citation: ZHANG Yiteng, LI Lei, XIE Lianghai, GOU Xiaochen, FENG Yongyong. Distribution and Characteristics of Martian Precipitating H-ENA (in Chinese). Chinese Journal of Space Science, 2024, 44(2): 299-308 doi: 10.11728/cjss2024.02.2023-0044

Distribution and Characteristics of Martian Precipitating H-ENA

doi: 10.11728/cjss2024.02.2023-0044 cstr: 32142.14.cjss2024.02.2023-0044
  • Received Date: 2023-04-07
  • Rev Recd Date: 2023-04-20
  • Available Online: 2023-12-15
  • Energetic Neutral Atom (ENA) is generated by charge exchange between energetic ions and background neutrals. As Martian exosphere extends far above the bow shock, hydrogen ENA (H-ENA) produced by solar wind proton may enter the lower atmosphere directly, depositing mass and energy in the atmosphere. Based on the single-fluid multispecies MHD model and exosphere model, this paper calculates the spatial distribution of the precipitating H-ENA flux at the height of 200 km on Mars, evaluates the particle and energy deposition rate of the precipitating H-ENA under different solar wind conditions, analyzes their controlling factors. The results show that the solar wind H-ENA generated upstream of the bow shock is less affected by the crustal fields, and shows a cosZ distribution. As a major mass and energy source, the precipitating solar wind H-ENAs account for 59% particle deposition and 81% energy deposition of the total precipitating ENAs. Magnetosheath H-ENA generated in the magnetosheath is greatly affected by the crustal fields, and their precipitating flux decreases significantly above the strongest magnetic anomalies. The precipitating H-ENA flux is proportional to the upstream solar wind flux, and 2.1%~3.5% of upstream solar wind protons are estimated to be converted into the solar wind H-ENAs.

     

  • loading
  • [1]
    GRUNTMAN M. Energetic neutral atom imaging of space plasmas[J]. Review of Scientific Instruments, 1997, 68(10): 3617-3656 doi: 10.1063/1.1148389
    [2]
    WURZ P. Detection of energetic neutral atoms[M]//The Outer Heliosphere: Beyond the Planets. Germany, 2000: 251-288
    [3]
    郭志忠, 符慧山, 刘杨洋. 火星空间环境中电子通量的统计研究[J]. 地球与行星物理论评, 2022, 53(4): 488-496 doi: 10.19975/j.dqyxx.2022-004

    GUO Zhizhong, FU Huishan, LIU Yangyang. Statistical study of electron flux in Martian space environment[J]. Reviews of Geophysics and Planetary Physics, 2022, 53(4): 488-496 doi: 10.19975/j.dqyxx.2022-004
    [4]
    VIGNES D, MAZELLE C, RME H, et al. The solar wind interaction with Mars: locations and shapes of the bow shock and the magnetic pile-up boundary from the observations of the MAG/ER Experiment onboard Mars Global Surveyor[J]. Geophysical Research Letters, 2000, 27(1): 49-52 doi: 10.1029/1999gl010703
    [5]
    DEIGHAN J, JAIN S K, CHAFFIN M S, et al. Discovery of a proton aurora at Mars[J]. Nature Astronomy, 2018, 2(10): 802-807 doi: 10.1038/s41550-018-0538-5
    [6]
    RITTER B, GÉRARD J C, HUBERT B, et al. Observations of the proton aurora on Mars with SPICAM on board Mars express[J]. Geophysical Research Letters, 2018, 45(2): 612-619 doi: 10.1002/2017gl076235
    [7]
    HALEKAS J S. Seasonal variability of the hydrogen exosphere of Mars[J]. Journal of Geophysical Research: Planets, 2017, 122(5): 901-911 doi: 10.1002/2017JE005306
    [8]
    KALLIO E, LUHMANN J G, BARABASH S. Charge exchange near Mars: The solar wind absorption and energetic neutral atom production[J]. Journal of Geophysical Research: Space Physics, 1997, 102(A10): 22183-22197 doi: 10.1029/97ja01662
    [9]
    WANG X D, ALHO M, JARVINEN R, et al. Precipitation of hydrogen energetic neutral atoms at the upper atmosphere of Mars[J]. Journal of Geophysical Research: Space Physics, 2018, 123(10): 8730-8748 doi: 10.1029/2018ja025188
    [10]
    BARABASH S, LUNDIN R, ZARNOWIECKI T, et al. Diagnostic of energetic neutral particles at Mars by the ASPERA-C instrument for the Mars 96 mission[J]. Advances in Space Research, 1995, 16(4): 81-86 doi: 10.1016/0273-1177(95)00212-w
    [11]
    FUTAANA Y, BARABASH S, GRIGORIEV A, et al. First ENA observations at Mars: ENA emissions from the martian upper atmosphere[J]. Icarus, 2006, 182(2): 424-430 doi: 10.1016/j.icarus.2005.09.019
    [12]
    FUTAANA Y, BARABASH S, GRIGORIEV A, et al. First ENA observations at Mars: Subsolar ENA jet[J]. Icarus, 2006, 182(2): 413-423 doi: 10.1016/j.icarus.2005.08.024
    [13]
    GUNELL H, BRINKFELDT K, HOLMSTRÖM M, et al. First ENA observations at Mars: Charge exchange ENAs produced in the magnetosheath[J]. Icarus, 2006, 182(2): 431-438 doi: 10.1016/j.icarus.2005.10.027
    [14]
    GALLI A, WURZ P, BARABASH S, et al. Energetic hydrogen and oxygen atoms observed on the nightside of Mars[J]. Space Science Reviews, 2006, 126(1): 267-297 doi: 10.1007/s11214-006-9088-8
    [15]
    GALLI A, WURZ P, KALLIO E, et al. Tailward flow of energetic neutral atoms observed at Mars[J]. Journal of Geophysical Research: Planets, 2008, 113(E12): E12012 doi: 10.1029/2008je003139
    [16]
    WANG X D, BARABASH S, FUTAANA Y, et al. Directionality and variability of energetic neutral hydrogen fluxes observed by Mars Express[J]. Journal of Geophysical Research: Space Physics, 2013, 118(12): 7635-7642 doi: 10.1002/2013JA018876
    [17]
    MA J J, LI W Y, KONG L G, et al. Solar wind energetic neutral atom observation at Mars by MINPA onboard the Tianwen-1 orbiter[C]//Proceedings of the Fall Meeting 2022. Chicago, American: AGU
    [18]
    ZHANG Y T, LI L, XIE L H, et al. Inversion of upstream solar wind parameters from ENA observations at Mars[J]. Remote Sensing, 2023, 15(7): 1721 doi: 10.3390/rs15071721
    [19]
    RAMSTAD R, BRAIN D A, DONG Y X, et al. Energetic neutral atoms near Mars: Predicted distributions based on MAVEN measurements[J]. The Astrophysical Journal, 2022, 927(1): 11 doi: 10.3847/1538-4357/ac4606
    [20]
    MA Y J, NAGY A F, SOKOLOV I V, et al. Three-dimensional, multispecies, high spatial resolution MHD studies of the solar wind interaction with Mars[J]. Journal of Geophysical Research: Space Physics, 2004, 109(A7): A07211 doi: 10.1029/2003ja010367
    [21]
    MA Y J, RUSSELL C T, FANG X, et al. MHD model results of solar wind interaction with Mars and comparison with MAVEN plasma observations[J]. Geophysical Research Letters, 2015, 42(21): 9113-9120 doi: 10.1002/2015GL065218
    [22]
    CHAMBERLAIN J W, HUNTEN D M. Theory of Planetary Atmospheres[M] Orlando FL: Academic Press, 1987
    [23]
    RINSUKE I, TATSUO T, TOSHIZO S, et al. Analytic cross sections for collision of H, H2, He and Li atoms and ions with atoms and melecules; 1993
    [24]
    LINDSAY B G, STEBBINGS R F. Charge transfer cross sections for energetic neutral atom data analysis[J]. Journal of Geophysical Research: Space Physics, 2005, 110(A12): A12213 doi: 10.1029/2005ja011298
    [25]
    SWACZYNA P, MCCOMAS D J, ZIRNSTEIN E J, et al. Angular scattering in charge exchange: Issues and implications for secondary interstellar hydrogen[J]. The Astrophysical Journal, 2019, 887(2): 223 doi: 10.3847/1538-4357/ab5440
    [26]
    HAIDER S A, MAHAJAN K K, BOUGHER S W, et al. Observations and modeling of martian auroras[J]. Space Science Reviews, 2022, 218(4): 32 doi: 10.1007/s11214-022-00906-2
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(4)

    Article Metrics

    Article Views(403) PDF Downloads(53) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return