Citation: | SHAN Yadong, ZHANG Hanxun, DU Changshuai, ZHONG Hongen. International Space Station External Multi-payload Operational Mission Planning (in Chinese). Chinese Journal of Space Science, 2024, 44(2): 215-227 doi: 10.11728/cjss2024.02.2023-0047 |
[1] |
GAO M, ZHAO G H, GU Y D. Recent progress in space science and applications of China’s Space Station in 2020-2022[J]. Chinese Journal of Space Science, 2022, 42(4): 503-510 doi: 10.11728/cjss2022.04.yg29
|
[2] |
CHINA Manned Space Agency. Scientific Experiment Resource Manual of China’s Space Station[R]. Beijing: China Ma-nned Space Agency, 2019
|
[3] |
NAHAY E. Space Station payload operations-The challenge of segmented planning in a continuous operations environme-nt[C]//Space Programs and Technologies Conference. Huntsvile: AIAA, 1995: 3536
|
[4] |
COOLEY V M. Unique offerings of the ISS as an Earth observing platform[C]//International Astronautical Congress. Bei-jing: IAF, 2013
|
[5] |
THIBEAULT S A, COOKE S A, ASHE M P, et al. MISSE-X: an ISS external platform for space environmental studies in the post-shuttle era[C]//2011 Aerospace Conference. Big Sky, MT, USA: IEEE, 2011: 1-13
|
[6] |
SOROKIN I V, KONOSHENKO V P, MARKOV A V. Research potential of the ISS Nauka module[J]. Acta Astronautica, 2022, 198: 777-784 doi: 10.1016/j.actaastro.2022.01.044
|
[7] |
JOHNSON Space Center. External Payloads Proposer’S Guide to the International Space Station[R]. Houston: Johnson S-pace Center, 2016
|
[8] |
CORLEY B, STEIMLE C. New Bartolomeo payload platform on the International Space Station[C]//AIAA SCITECH 20-22 Forum. San Diego: AIAA, 2022
|
[9] |
KAWASAKI K. Overview of JEM-EF on ISS[C]//Proceedings of the RIKEN Symposium. Saitama: JAXA, 2008: 1-3
|
[10] |
BACHOLLE S, BARRILLON P, BATTISTI M, et al. Mini-EUSO mission to study Earth UV emissions on board the ISS[J]. The Astrophysical Journal Supplement Series, 2021, 253(2): 36 doi: 10.3847/1538-4365/abd93d
|
[11] |
BECKETT K. UrtheCast second-generation EARTH observation sensors[J]. The International Archives of the Photogram-metry, Remote Sensing and Spatial Information Sciences, 2015, XL-7/W3: 1069-1073
|
[12] |
BERGER T, HAJEK M, BILSKI P, et al. Cosmic radiation exposure of biological test systems during the EXPOSE-R mis-sion[J]. International Journal of Astrobiology, 2015, 14(1): 27-32 doi: 10.1017/S1473550414000548
|
[13] |
PIKE S N, NEGORO H, TOMSICK J A, et al. MAXI and NuSTAR observations of the faint X-ray transient MAXI J1848015 in the GLIMPSE-C01 Cluster[J]. The Astrophysical Journal, 2022, 927(2): 190 doi: 10.3847/1538-4357/ac5258
|
[14] |
ZUCCON P. AMS-02 experiment: status and perspectives[J]. Nuclear and Particle Physics Proceedings, 2019, 306-308: 74-79 doi: 10.1016/j.nuclphysbps.2019.07.011
|
[15] |
ASAOKA Y, OZAWA S, TORII S, et al. On-orbit operations and offline data processing of CALET onboard the ISS[J]. A-stroparticle Physics, 2018, 100: 29-37 doi: 10.1016/j.astropartphys.2018.02.010
|
[16] |
ZHANG H G, ANGELASZEK D, COPLEY M, et al. Performance of the ISS-CREAM calorimeter in a calibration beam test[J]. Astroparticle Physics, 2021, 130: 102583 doi: 10.1016/j.astropartphys.2021.102583
|
[17] |
ARZOUMANIAN Z, GENDREAU K C, BAKER C L, et al. The Neutron Star Interior Composition Explorer (NICER): mission definition[C]//Space Telescopes and Instrumentation 2014: Ultraviolet to Gamma Ray. Montréal, Quebec, Canada: SPIE, 2014: 579-587
|
[18] |
BROWN P, ENGELMANN A. TSIS experiences with ISS Jitter from inception to On-Orbit Operation[C]//Annual Guida-nce and Control Conference. Breckenridge, Colorado, USA: AAS, 2019
|
[19] |
OBARA T. Space environment data acquisition with KIBO exposed facility on the International Space Station (ISS)[J]. El-ectronics Communications in Japan, 2012, 95(9): 10-16
|
[20] |
MARIEN G, JACOBS C, MICHEL A, et al. SOLAR, 9 years of operations as external payload on the ISS: The technical challenges overcome[C]//2018 SpaceOps Conference. Marseille: AIAA, 2018
|
[21] |
SAKAIZAWA D, MITSUHAHI R, MUROOKA J, et al. Current status of the ISS-vegetation lidar Mission-MOLI[C]//IG-ARSS 2018-2018 IEEE International Geoscience and Remote Sensing Symposium. Valencia: IEEE, 2018: 1861-1864
|
[22] |
GUZMÁN R, DAVIS S, OCERIN E, et al. In-Orbit demonstration of the iSIM-170 optical payload onboard the ISS[C]//S-mall Satellite Conference. Logan: Utah State University, 2020
|
[23] |
BLAKESLEE R J, LANG T J, KOSHAK W J, et al. Three years of the Lightning Imaging Sensor on-board the Internatio-nal Space Station: expanded global coverage and enhanced applications[J]. Journal of Geophysical Research: Atmospher-es, 2020, 125(16): e2020JD032918 doi: 10.1029/2020JD032918
|
[24] |
LILES K A K, AMUNDSEN R M, DAVIS W T, et al. Thermal design and analysis of an ISS science payload-SAGE III on ISS[C]//47th International Conference on Environmental Systems. Charleston: ICES, 2017
|
[25] |
MÜLLER R, AVBELJ J, CARMONA E, et al. The new hyperspectral sensor DESIS on the multi-payload platform MUS-ES installed on the ISS[J]. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2016, XLI-B1: 461-467 doi: 10.5194/isprs-archives-XLI-B1-461-2016
|
[26] |
NEUBERT T, ØSTGAARD N, REGLERO V, et al. The ASIM mission on the International Space Station[J]. Space Scien-ce Reviews, 2019, 215(2): 26 doi: 10.1007/s11214-019-0592-z
|
[27] |
YELAMANCHILI A, CHIEN S, CAWSE-NICHOLSON K, et al. Automated policy-based scheduling for the ECOSTRE-SS mission[C]//Earth Science Technology Forum. Pasadena: NASA, 2019
|
[28] |
DUBAYAH R, BLAIR J B, GOETZ S, et al. The Global Ecosystem Dynamics Investigation: High-resolution laser ranging of the Earth’s forests and topography[J]. Science of remote sensing, 2020, 1: 100002 doi: 10.1016/j.srs.2020.100002
|
[29] |
BASILIO R R, BENNETT M W, ELDERING A, et al. Orbiting Carbon Observatory-3 (OCO-3), remote sensing from the International Space Station (ISS)[C]//Sensors, Systems, and Next-Generation Satellites XXIII. Strasbourg, France: SPIE, 2019, 11151: 42-55
|
[30] |
MATSUNAGA T, IWASAKI A, TACHIKAWA T, et al. Hyperspectral Imager Suite (HISUI): its launch and current status[C]//IGARSS 2020-2020 IEEE International Geoscience and Remote Sensing Symposium. Waikoloa: IEEE, 2020: 3272-3273
|
[31] |
GREEN R O. The NASA Earth venture instrument, Earth surface Mineral dust source investigation (EMIT)[C]//IGARSS 2022-2022 IEEE International Geoscience and Remote Sensing Symposium. Kuala Lumpur, Malaysia: IEEE, 2022: 5004-5006
|
[32] |
SHIOTANI M, SAITO A, SAKAZAKI T, et al. A proposal for satellite observation of the whole atmosphere-Superconduc-ting Submillimeter-Wave Limb-Emission Sounder (SMILES-2)[C]//IGARSS 2019-2019 IEEE International Geoscience and Remote Sensing Symposium. Yokohama, Japan: IEEE, 2019: 8788-8791
|
[33] |
HU C M. Hyperspectral reflectance spectra of floating matters derived from Hyperspectral Imager for the Coastal Ocean (HICO) observations[J]. Earth System Science Data, 2022, 14(3): 1183-1192 doi: 10.5194/essd-14-1183-2022
|
[34] |
YORKS J E, SELMER P A, KUPCHOCK A, et al. Aerosol and cloud detection using machine learning algorithms and sp-ace-based lidar data[J]. Atmosphere, 2021, 12(5): 606 doi: 10.3390/atmos12050606
|
[35] |
DURDEN S L, PERKOVIC-MARTIN D. The RapidScat ocean winds scatterometer: A radar system engineering perspect-ive[J]. IEEE Geoscience and Remote Sensing Magazine, 2017, 5(3): 36-43 doi: 10.1109/MGRS.2017.2678999
|
[36] |
MURI P, RUNCO S, FONTANOT C, et al. The high definition earth viewing (HDEV) payload[C]//2017 IEEE Aerospace Conference. Big Sky, MT, USA: IEEE, 2017: 1-7
|
[37] |
WICKERT J, CARDELLACH E, MARTÍN-NEIRA M, et al. GEROS-ISS: GNSS reflectometry, radio occultation, and sc-atterometry onboard the international space station[J]. IEEE Journal of selected topics in applied Earth observations and Remote Sensing, 2016, 9(10): 4552-4581 doi: 10.1109/JSTARS.2016.2614428
|
[38] |
ROFFE S, SCHWARZ T, COOK T, et al. CASPR: Autonomous sensor processing experiment for STP-H7[C]//Proceedin-gs of the AIAA/USU Small Satellite Conference. Logan: Utah State University, 2020
|
[39] |
BROWN S, FOCARDI P, KITIYAKARA A, et al. The COWVR Mission: Demonstrating the capability of a new generati-on of small satellite weather sensors[C]//2017 IEEE Aerospace Conference. Big Sky, MT, USA: IEEE, 2017: 1-7
|
[40] |
AOKI T, HIGUCHI K, WATANABE K, et al. Progress report of simple space experiment project on ISS Japan experiment module[J]. Transactions of The Japan Society For Aeronautical And Space Sciences, Aerospace Technology Japan, 2014, 12(ists29): Tc_1-Tc_6 doi: 10.2322/tastj.12.Tc_1
|
[41] |
AKAGI H, TAKATA M, WATANABE H, et al. Kibo’s contribution to broadening the possibilities for micro-satellite[C]// 2016 SpaceOps Conference. Deajeon: AIAA, 2016
|
[42] |
ANZ-MEADOR P, WARD M, MANIS A, et al. The space debris sensor experiment[C]//International Orbital Debris (IOC) Conference. Sugar Land, Texas, USA: NASA, 2019
|
[43] |
TOMLINSON Z, GALLAGHER W, CASSIDY J, et al. Lessons for Future In-Space Telerobotic Servicing from Robotic Re-fueling Mission[C]//2022 IEEE Aerospace Conference (AERO). Big Sky, MT, USA: IEEE, 2022: 1-17
|
[44] |
SINDIY O, ABRAHAMSON M, BISWAS A, et al. Lessons learned from Optical Payload for Lasercomm Science (OPALS) mission operations[C]//AIAA SPACE 2015 Conference and Exposition. Los Angeles: AIAA, 2015
|
[45] |
REINHART R C, KACPURA T J, JOHNSON S K, et al. NASA’s space communications and navigation test bed aboard t-he international space station[J]. IEEE Aerospace and Electronic Systems Magazine, 2013, 28(4): 4-15 doi: 10.1109/MAES.2013.6506824
|
[46] |
RABBOW E, RETTBERG P, BARCZYK S, et al. EXPOSE-E: an ESA astrobiology mission 1.5 years in space[J]. Astrob-iology, 2012, 12(5): 374-386 doi: 10.1089/ast.2011.0760
|
[47] |
RABBOW E, RETTBERG P, BARCZYK S, et al. The astrobiological mission EXPOSE-R on board of the International Space Station[J]. International Journal of Astrobiology, 2015, 14(1): 3-16 doi: 10.1017/S1473550414000202
|
[48] |
RABBOW E, RETTBERG P, PARPART A, et al. EXPOSE-R2: the astrobiological ESA mission on board of the Internati-onal Space Station[J]. Frontiers in Microbiology, 2017, 8: 1533 doi: 10.3389/fmicb.2017.01533
|
[49] |
YAMAGISHI A, HASHIMOTO H, YANO H, et al. Four-year operation of Tanpopo: astrobiology exposure and micromet-eoroid capture experiments on the JEM exposed facility of the International Space Station[J]. Astrobiology, 2021, 21(12): 1461-1472 doi: 10.1089/ast.2020.2430
|
[50] |
顾逸东. 关于空间科学发展的一些思考[J]. 中国科学院院刊, 2022, 37(8): 1031-1049
GU Yidong. Thoughts on space science development[J]. Bulletin of Chinese Academy of Sciences, 2022, 37(8): 1031-1049
|
[51] |
POPOV A. Mission planning on the international space station program, concepts and systems[C]//2003 IEEE Aerospace Conference Proceedings. Big Sky, MT, USA: IEEE, 2003: 3427-3434
|
[52] |
LEUTTGENS R, VOLPP J. Operations planning for the International Space Station[J]. ESA bulletin, 1998, 94: 1-7
|
[53] |
HAGOPIAN J, MAXWELL T, REED T. A distributed planning concept for Space Station payload operations[C]//NASA Conference Publication. Washington: NASA, 1994: 287-294
|
[54] |
HORVATH T, GRIMALDI R, MORRIS D, et al. History of POIC capabilities and limitations to conduct International Sp-ace Station payload operations[C]//AIAA Space 2011 Conference and Exposition. Long Beach: AIAA, 2011
|
[55] |
MAXWELL T G. Lessons learned in developing multiple distributed planning systems for the International Space Station [C]//2002 SpaceOps Conference. Houston: AIAA, 2002
|
[56] |
SAINT R. Lessons learned in developing an international planning software system[C]//2002 SpaceOps Conference. Hou-ston: AIAA, 2002
|
[57] |
MAXWELL T, HOWELL E. Planning as a precursor to scheduling for Space Station payload operations[C]//Space Progr-ams and Technologies Conference. Huntsvile: AIAA, 1995
|
[58] |
张泽旭, 李瑞雪. 国际空间站智能在轨运行进展及启示[J]. 空间科学学报, 2021, 41(1): 118-128 doi: 10.11728/cjss2021.01.118
ZHANG Zexu, LI Ruixue. Progress and enlightenment of intelligent on-orbit operation of International Space Station[J]. Chinese Journal of Space Science, 2021, 41(1): 118-128 doi: 10.11728/cjss2021.01.118
|
[59] |
MUERY K, FOSHEE M, MARSH A. Automated derivation of complex system constraints from user requirements[C]//2nd IEEE International Conference on Space Mission Challenges for Information Technology (SMC-IT'06). Pasadena: IEEE, 2006: 6-412
|
[60] |
KLAI S, MICHEL A, MOREAU D, et al. SOLAR Predictor: A knowledge management tool supporting long term console operations[C]//2014 SpaceOps Conference. Pasadena: AIAA, 2014
|
[61] |
STRUYVEN K, BRUN N, DIAZ A. A planning tool for ISS payload operations and preparations[C]//2018 SpaceOps Con-ference. Marseille: AIAA, 2018
|
[62] |
LEUOTH K, SABATH D, SOELLNER G. Consolidating Columbus operations and looking for new frontiers[C]//Internat-ional Astronautical Congress. Jerusalem, Israel: IAF, 2015
|
[63] |
PEDOTO R, ALBERS C M, BENJAMIN D, et al. Innovative development of a cross-center timeline planning tool[C]//2018 SpaceOps Conference. Marseille: AIAA, 2018
|
[64] |
KNIGHT R, HU S. Compressed Large-scale Activity Scheduling and Planning (CLASP) applied to DESDynI[C]//Procee-dings of the Sixth International Workshop in Planning and Scheduling for Space (IWPSS-2009). Pasadena, California: As-sociation for the Advancement of Artificial Intelligence, 2009
|
[65] |
DOUBLEDAY J R. Three petabytes or bust: planning science observations for NISAR[C]//Earth Observing Missions and Sensors: Development, Implementation, and Characterization IV. New Delhi, India: SPIE, 2016: 1-7
|
[66] |
YELAMANCHILI A, CHIEN S, MOY A, et al. Automated science scheduling for the ECOSTRESS mission[C]//Schedul-ing and Planning Applications Workshop. Berkeley, USA: ICAPS, 2019
|
[67] |
YELAMANCHILI A, WELLS C, CHIEN S, et al. Scheduling and operations of the orbiting carbon observatory-3 mission[C]//Scheduling and Planning Applications Workshop. Guangzhou, China: ICAPS, 2021
|