Volume 44 Issue 2
Apr.  2024
Turn off MathJax
Article Contents
BAN Lei, HE Jieying, ZHANG Shengwei. System Design of Millimeter Wave Atmospheric Ozone Radiometer (in Chinese). Chinese Journal of Space Science, 2024, 44(2): 318-325 doi: 10.11728/cjss2024.02.2023-0053
Citation: BAN Lei, HE Jieying, ZHANG Shengwei. System Design of Millimeter Wave Atmospheric Ozone Radiometer (in Chinese). Chinese Journal of Space Science, 2024, 44(2): 318-325 doi: 10.11728/cjss2024.02.2023-0053

System Design of Millimeter Wave Atmospheric Ozone Radiometer

doi: 10.11728/cjss2024.02.2023-0053 cstr: 32142.14.cjss2024.02.2023-0053
  • Received Date: 2023-05-06
  • Accepted Date: 2024-03-26
  • Rev Recd Date: 2023-05-16
  • Available Online: 2023-12-04
  • Stratospheric ozone concentration has an important impact on global climate change and ecological environment. Hyperspectral millimeter wave radiometer with spectral analysis capability is a passive microwave remote sensor used to detect atmospheric trace gases. It can effectively detect the vertical profile of atmospheric ozone and has very important application value in the field of space earth science. In this paper, a new hyperspectral millimeter wave ozone radiometer system for detecting stratospheric ozone absorption lines is developed. The system structure includes RF receiver and digital spectrum analyzer. The RF receiver part uses a superheterodyne structure to obtain a 142.175 GHz ± 100 MHz bandwidth signal. The digital spectrum analysis part uses a high-performance analog-to-digital converter to sample the input analog signal at 5×108 sample·s–1. The quantization bit is 14 bit and the 3 dB bandwidth of the input signal is 200 MHz. The signal power spectrum is obtained by high-performance Field Programmable Gate Array (FPGA), and the number of detection channels is 16384, and the spectral resolution reached 12.2 kHz. This paper introduces the design scheme, device selection and test method of the key modules of the radiometer system. It is concluded that the system sensitivity and various indicators can meet the requirements of atmospheric ozone inversion, and the correctness of the system design is verified by conducting atmospheric detection experiments and comparing the experimental results with the simulation results of Atmospheric Radiative Transfer Simulation Software (ARTS). The radiometer system meets the application requirements of stratospheric ozone concentration monitoring, early warning and climate change research.

     

  • loading
  • [1]
    LACIS A A, WUEBBLES D J, LOGAN J A. Radiative forcing of climate by changes in the vertical distribution of ozone[J]. Journal of Geophysical Research: Atmospheres, 1990, 95(D7): 9971-9981 doi: 10.1029/JD095iD07p09971
    [2]
    白开旭. 全球大气臭氧总量变化趋势及其区域气候影响机制研究[D]. 上海: 华东师范大学, 2015

    BAI Kaixu. Investigations of the Long-Term Variability of Global Total Column Ozone and its Impacts on Regional Climate Change[D]. Shanghai: East China Normal University, 2015
    [3]
    DEL FRATE F, CASADIO S, ZEHNER C. Retrieval of ozone profiles by using GOME measurements and a neural network algorithm[C]//Proceedings of the IEEE 2000 International Geoscience and Remote Sensing Symposium. Taking the Pulse of the Planet: the Role of Remote Sensing in Managing the Environment. Honolulu: IEEE, 2000: 205-207
    [4]
    周颖, 黄云彪, 李东玲, 等. 一种改进型非交叉非对称C-T结构近红外微型光谱仪设计[J]. 仪器仪表学报, 2021, 42(5): 25-33

    ZHOU Ying, HUANG Yunbiao, LI Dongling, et al. Design of the improved micro near spectrometer based on non-cross asymmetric C-T structure[J]. Chinese Journal of Scientific Instrument, 2021, 42(5): 25-33
    [5]
    ULABY F T, MOORE R K, FUNG A K. Microwave Remote Sensing: Active and Passive. Volume I-Microwave Remote Sensing Fundamentals and Radiometry[M]. Norwood, MA: Addison-Wesley Publishing Company, 1981
    [6]
    FERNANDEZ S, MURK A, KÄMPFER N. GROMOS-C, a novel ground-based microwave radiometer for ozone measurement campaigns[J]. Atmospheric Measurement Techniques, 2015, 8(7): 2649-2662 doi: 10.5194/amt-8-2649-2015
    [7]
    HILLIARD L, RACETTE P, BLACKWELL W, et al. Hyperspectral Microwave Atmospheric Sounder (HyMAS) architecture and design accommodations[C]//Proceedings of 2013 IEEE Aerospace Conference. Big Sky: IEEE, 2013: 1-11
    [8]
    XIE Y, CHEN J X, LIU D W, et al. Development and calibration of a K-band ground-based hyperspectral microwave radiometer for water vapor measurements[J]. Progress in Electromagnetics Research, 2013, 140: 415-438 doi: 10.2528/PIER13050704
    [9]
    MULLER S C, MURK A, MONSTEIN C, et al. Intercomparison of digital fast Fourier transform and acoustooptical spectrometers for microwave radiometry of the atmosphere[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(7): 2233-2239 doi: 10.1109/TGRS.2009.2013695
    [10]
    JIN J D, YAO Q J, LI S, et al. The terahertz radiometer for APSOS project at Yangbajing observing station[C]//Proceedings of 2018 IEEE MTT-S International Wireless Symposium. Chengdu: IEEE, 2018: 1-4
    [11]
    HAGEN J, MURK A, RÜFENACHT R, et al. WIRA-C: a compact 142-GHz-radiometer for continuous middle-atmospheric wind measurements[J]. Atmospheric Measurement Techniques, 2018, 11(9): 5007-5024 doi: 10.5194/amt-11-5007-2018
    [12]
    王子懿, 沈三民, 杨峰, 等. 基于FPGA的高速大容量存储与传输系统[J]. 电子测量技术, 2021, 44(13): 150-155

    WANG Ziyi, SHEN Sanmin, YANG Feng, et al. High speed and large capacity storage and transmission system based on FPGA[J]. Electronic Measurement Technology, 2021, 44(13): 150-155
    [13]
    栾卉, 赵凯. 微波辐射计接收机两点定标法误差分析及准确性验证[J]. 红外与毫米波学报, 2007, 26(4): 289-292 doi: 10.3321/j.issn:1001-9014.2007.04.011

    LUAN Hui, ZHAO Kai. Error analysis and accuracy validation of two-point calibration for microwave radiometer receiver[J]. Journal of Infrared and Millimeter Waves, 2007, 26(4): 289-292 doi: 10.3321/j.issn:1001-9014.2007.04.011
    [14]
    许皓文, 陆浩, 王振占. 高光谱微波辐射计系统中2GHz带宽数字谱仪设计[J]. 电子学报, 2022, 50(6): 1472-1479 doi: 10.12263/DZXB.20201178

    XU Haowen, LU Hao, WANG Zhenzhan. Design of 2 GHz bandwidth digital spectrometer in hyperspectral microwave radiometer system[J]. Acta Electronica Sinica, 2022, 50(6): 1472-1479 doi: 10.12263/DZXB.20201178
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(1)

    Article Metrics

    Article Views(323) PDF Downloads(48) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return