Volume 44 Issue 2
Apr.  2024
Turn off MathJax
Article Contents
LIU Dan, WU Zhijing, YANG Junfeng, CHENG Xuan, WANG Jianmei, ZHANG Yiming, HU Xiong. Analysis of the Nighttime Variation Characteristics of Mesospheric Ozone and Correlation with Solar Activity (in Chinese). Chinese Journal of Space Science, 2024, 44(2): 262-269 doi: 10.11728/cjss2024.02.2023-0061
Citation: LIU Dan, WU Zhijing, YANG Junfeng, CHENG Xuan, WANG Jianmei, ZHANG Yiming, HU Xiong. Analysis of the Nighttime Variation Characteristics of Mesospheric Ozone and Correlation with Solar Activity (in Chinese). Chinese Journal of Space Science, 2024, 44(2): 262-269 doi: 10.11728/cjss2024.02.2023-0061

Analysis of the Nighttime Variation Characteristics of Mesospheric Ozone and Correlation with Solar Activity

doi: 10.11728/cjss2024.02.2023-0061 cstr: 32142.14.cjss2024.02.2023-0061
  • Received Date: 2023-05-31
  • Rev Recd Date: 2024-01-05
  • Available Online: 2024-01-31
  • The satellite ozone data of ENVISAT-1/GOMOS (Global Ozone Monitoring by Occultation of Stars) and TIMED/SABER (Sounding of the Atmosphere using Broadband Emission Radiometry) are analyzed to provide a statistical analysis of the distribution of ozone in the tropical mesosphere (60~110 km) at night (20:00 LT-24:00 LT) and explore its correlation with the 27-day solar cycle with HAMMONIA (Hamburg model of the neutral and ionized atmosphere). Both observations and model indicate that the nighttime ozone in the mesosphere peaks at 95 km and there is a semiannual oscillation in the upper mesosphere; Comparison with Lyman-α solar radiative forcing data over the same period shows that upper mesospheric (above 80 km) ozone may be inversely correlated with solar forcing, and lower mesospheric ozone may be positively correlated with solar forcing.. In order to better explore the correlation with solar activity, the ozone data were processed by filtering, and it was found that the inverse correlation between ozone at 95 km and Lyman-α was more significant. This correlation is more pronounced when long-term and short-term fluctuations are removed, especially in the months before and after the period of maximum amplitude of the 27-day solar radiative forcing cycle (around January and July 2004). Although the observations and the model results share some common features in the temporal and spatial distribution of ozone variations with months, large differences are found in the values of the peaks where the amplitude of ozone sensitivity is greatly underestimated by the model.

     

  • loading
  • [1]
    THIÉBLEMONT R, BEKKI S, MARCHAND M, et al. Nighttime mesospheric/lower thermospheric tropical ozone response to the 27-day solar rotational cycle: ENVISAT-GOMOS satellite observations versus HAMMONIA idealized chemistry-climate model simulations[J]. Journal of Geophysical Research: Atmospheres, 2018, 123(16): 8883-8896 doi: 10.1029/2017JD027789
    [2]
    BARTH C A, RUSCH D W, THOMAS R J, et al. Solar mesosphere explorer: scientific objectives and results[J]. Geophysical Research Letters, 1983, 10(4): 237-240 doi: 10.1029/GL010i004p00237
    [3]
    AIKIN A C, SMITH H J P. Mesospheric ozone changes associated with 27 day solar ultraviolet flux variations[J]. Geophysical Research Letters, 1986, 13(5): 427-430 doi: 10.1029/GL013i005p00427
    [4]
    KEATING G M, PITTS M C, BRASSEUR G, et al. Response of middle atmosphere to short-term solar ultraviolet variations: 1. Observations[J]. Journal of Geophysical Research: Atmospheres, 1987, 92(D1): 889-902 doi: 10.1029/JD092iD01p00889
    [5]
    HOOD L L, HUANG Z, BOUGHER S W. Mesospheric effects of solar ultraviolet variations: Further analysis of SME IR ozone and Nimbus 7 SAMS temperature data[J]. Journal of Geophysical Research: Atmospheres, 1991, 96(D7): 12989-13002 doi: 10.1029/91JD01177
    [6]
    SHAPIRO A V, ROZANOV E, SHAPIRO A I, et al. Signature of the 27-day solar rotation cycle in mesospheric OH and H2O observed by the Aura Microwave Limb Sounder[J]. Atmospheric Chemistry and Physics, 2012, 12(7): 3181-3188 doi: 10.5194/acp-12-3181-2012
    [7]
    LEE J N, WU D L. Solar cycle modulation of nighttime ozone near the mesopause as observed by MLS[J]. Earth and Space Science, 2020, 7(4): e2019EA001063 doi: 10.1029/2019EA001063
    [8]
    GAN Q, DU J, FOMICHEV V I, et al. Temperature responses to the 11 year solar cycle in the mesosphere from the 31 year (1979-2010) extended Canadian Middle Atmosphere Model simulations and a comparison with the 14 year (2002-2015) TIMED/SABER observations[J]. Journal of Geophysical Research: Space Physics, 2017, 122(4): 4801-4818 doi: 10.1002/2016JA023564
    [9]
    程旋, 肖存英, 胡雄, 等. 基于TIMED/SABER卫星温度数据对大气经验模型的评估[J]. 中国科学: 物理学 力学 天文学, 2018, 48 (10): 104701

    CHENG Xuan, XIAO Cunying, HU Xiong, et al. Evaluation of atmospheric empirical model based on TIMED/SABER satellite temperature data[J]. Scientia Sinica Physica, Mechanica & Astronomica, 2018, 48 (10): 104701
    [10]
    操文祥, 张绍东, 易帆, 等. 中间层顶变化的SABER/TIMED卫星观测[J]. 地球物理学报, 2012, 55(8): 2489-2497 doi: 10.6038/j.issn.0001-5733.2012.08.001

    CAO Wenxiang, ZHANG Shaodong, YI Fan, et al. Variation of the mesopause observed by SABER/TIMED satellite[J]. Chinese Journal of Geophysics, 2012, 55(8): 2489-2497 doi: 10.6038/j.issn.0001-5733.2012.08.001
    [11]
    徐寄遥, 纪巧, 袁韦, 等. TIMED卫星探测的全球大气温度分布及其与经验模式的比较[J]. 空间科学学报, 2006, 26(3): 177-182 doi: 10.3969/j.issn.0254-6124.2006.03.004

    XU Jiyao, JI Qiao, YUAN Wei, et al. Comparison between the TIMED observed global temperature distribution and the NRLMSISE-00 empirical atmospheric model[J]. Chinese Journal of Space Science, 2006, 26(3): 177-182 doi: 10.3969/j.issn.0254-6124.2006.03.004
    [12]
    万凌峰. 夏季北半球平流层臭氧对太阳紫外准11年循环的响应及机制[D]. 南京: 南京信息工程大学, 2016

    WAN Lingfeng. Response and related mechanism of stratospheric ozone in the summer northern hemisphere to the quasi-11 years ultraviolet cycle of the sun[D]. Nanjing: Nanjing University of Information Science and Technology, 2016
    [13]
    唐超礼. 高空大气多参数时空分布特性研究[D]. 合肥: 中国科学技术大学, 2018

    TANG Chaoli. Study on the temporal and spatial distribution characteristics of multiple parameters of high altitude atmosphere[D]. Hefei: University of Science and Technology of China, 2018
    [14]
    刘毅, 陆春晖, 王永, 等. 利用GOMOS卫星资料研究热带平流层臭氧、二氧化氮和三氧化氮的准两年和半年振荡特征[J]. 科学通报, 2011, 56 (18): 1455-1463

    LIU Yi, LU Chunhui, WANG Yong, et al. The quasi-biennial and semi-annual oscillation features of tropical O3, NO2, and NO3 revealed by GOMOS satellite observations for 2002-2008[J]. Chinese Science Bulletin, 2011, 56 (18): 1455-1463
    [15]
    常舒捷. 基于多源资料的中层大气重力波分析及其对臭氧的影响[D]. 长沙: 国防科技大学, 2021

    CHANG Shujie. Analysis of gravity waves in the middle atmosphere based on multi-source data and its impact on ozone[D]. Changsha: National University of Defense Technology, 2021
    [16]
    陆春晖. 平流层环流的变化特征及其对ENSO海温异常和太阳周期活动的响应[D]. 北京: 中国科学院大气物理研究所, 2011

    LU Chunhui. Characteristics of stratospheric circulation and its response to ENSO events and sunspot cycle[D]. Beijing: Institute of Atmospheric Physics, Chinese Academy of Sciences, 2011
    [17]
    程旋. 临近空间大气建模及其应用研究[D]. 北京: 中国科学院大学(中国科学院国家空间科学中心), 2020

    CHENG Xuan. Researches on atmospheric modeling and applications in near space[D]. Beijing: National Space Science Center, University of Chinese Academy of Sciences, 2020
    [18]
    杨文凯, 杨钧烽, 郭文杰, 等. Aura/MLS与TIMED/SABER观测全球重力波特性[J]. 空间科学学报, 2022, 42(5): 919-926 doi: 10.11728/cjss2022.05.210906098

    YANG Wenkai, YANG Junfeng, GUO Wenjie, et al. Global stratospheric gravity wave characteristics by Aura/MLS and TIMED/SABER observation data[J]. Chinese Journal of Space Science, 2022, 42(5): 919-926 doi: 10.11728/cjss2022.05.210906098
    [19]
    肖存英. 临近空间大气动力学特性研究[D]. 北京: 中国科学院研究生院(空间科学与应用研究中心), 2009

    XIAO Cunying. Researches on the dynamics of the atmosphere in the near space[D]. Beijing: Center for Space Science and Applied Research, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 2009
    [20]
    ROECKNER E, BROKOPF R, ESCH M, et al. Sensitivity of simulated climate to horizontal and vertical resolution in the ECHAM5 atmosphere model[J]. Journal of Climate, 2006, 19(16): 3771-3791 doi: 10.1175/JCLI3824.1
    [21]
    GIORGETTA M A, MANZINI E, ROECKNER E, et al. Climatology and forcing of the Quasi-Biennial Oscillation in the MAECHAM5 model[J]. Journal of Climate, 2006, 19(16): 3882-3901 doi: 10.1175/JCLI3830.1
    [22]
    MANZINI E, GIORGETTA M A, ESCH M, et al. The influence of sea surface temperatures on the northern winter stratosphere: ensemble simulations with the MAECHAM5 model[J]. Journal of Climate, 2006, 19(16): 3863-3881 doi: 10.1175/JCLI3826.1
    [23]
    KINNISON D E, BRASSEUR G P, WALTERS S, et al. Sensitivity of chemical tracers to meteorological parameters in the MOZART-3 chemical transport model[J]. Journal of Geophysical Research: Atmospheres, 2007, 112(D20): D20302
    [24]
    GRUZDEV A N, SCHMIDT H, BRASSEUR G P. The effect of the solar rotational irradiance variation on the middle and upper atmosphere calculated by a three-dimensional chemistry-climate model[J]. Atmospheric Chemistry and Physics, 2009, 9(2): 595-614 doi: 10.5194/acp-9-595-2009
    [25]
    SCHMIDT H, BRASSEUR G P, CHARRON M, et al. The HAMMONIA chemistry climate model: sensitivity of the mesopause region to the 11-year solar cycle and CO2 doubling[J]. Journal of Climate, 2006, 19(16): 3903-3931 doi: 10.1175/JCLI3829.1
    [26]
    HUANG F T, MAYR H G, REBER C A, et al. Ozone quasi-biennial oscillations (QBO), semiannual oscillations (SAO), and correlations with temperature in the mesosphere, lower thermosphere, and stratosphere, based on measurements from SABER on TIMED and MLS on UARS[J]. Journal of Geophysical Research: Space Physics, 2008, 113(A1): A01316
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)

    Article Metrics

    Article Views(394) PDF Downloads(60) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return