Citation: | HONG Yu, CHEN Yongqiang, CAI Tingbin, CHANG Xiao, XU Liang, JING Hongbao. Near-Earth Asteroid Impact Event Disposal Rules and Processes (in Chinese). Chinese Journal of Space Science, 2024, 44(2): 287-298 doi: 10.11728/cjss2024.02.2023-0064 |
[1] |
YEOMANS D K. Near-Earth Objects: Finding Them Before They Find Us[M]. Princeton: Princeton University Press, 2013
|
[2] |
NASA. Near-Earth Object Survey and Deflection Analysis of Alternatives, Report to Congress[R]. NASA, 2007
|
[3] |
MA Pengbin, BAOYIN Hexi. Research status of the near-Earth asteroids’ hazard and mitigation[J]. Journal of Deep Space Exploration, 2016, 3(1): 10-17
|
[4] |
National Research Council (US). Defending Planet Earth: Near-Earth Object Surveys and Hazard Mitigation Strategies[M]. Washington: National Academies Press, 2010
|
[5] |
O’KEEFE J D, AHRENS T J. Impact production of CO2 by the Cretaceous/Tertiary extinction bolide and the resultant heating of the Earth[J]. Nature, 1989, 338(6212): 247-249 doi: 10.1038/338247a0
|
[6] |
BROWN P G, ASSINK J D, ASTIZ L, et al. A 500-kiloton airburst over Chelyabinsk and an enhanced hazard from small impactors[J]. Nature, 2013, 503(7475): 238-241 doi: 10.1038/nature12741
|
[7] |
MICHELI M, WAINSCOAT R J, DENNEAU L. Detectability of Chelyabinsk-like impactors with Pan-STARRS[J]. Icarus, 2018, 303: 265-272 doi: 10.1016/j.icarus.2017.10.010
|
[8] |
GONG Zizheng, LI Ming, CHEN Chuan, et al. The frontier science and key technologies of asteroid monitoring and early warning, security defense and resource utilization[J]. Chinese Science Bulletin, 2020, 65(5): 346-372 doi: 10.1360/TB-2019-0425
|
[9] |
KOSCHNY D, BUSCH M, DROLSHAGEN G. Asteroid observations at the Optical Ground Station in 2010—Lessons learnt[J]. Acta Astronautica, 2013, 90(1): 49-55 doi: 10.1016/j.actaastro.2012.10.002
|
[10] |
ZHANG Xiang, JI Jianghui. Ground-based radar detection of near-earth asteroids[J]. Progress in Astronomy, 2014, 32(1): 24-39 doi: 10.3969/j.issn.1000-8349.2014.01.02
|
[11] |
SONG Guangming, WU Qiang, CHEN Chuan, et al. Advances on mission analysis and design software for active planetary defense against near earth asteroids[J]. Space Debris Research, 2021, 21(2): 27-34
|
[12] |
NASA Glenn Research Center Space Science Projects Office. LTTT Suite Optimization Tools, in: A. Timothy Reckart (Ed. ), 23 April 2012[EB/OL]. http://microgravity.grc.nasa.gov/SSPO/ISPTProg/LTTT/, 2012-05
|
[13] |
General Mission Analysis Tool (GMAT). National Aeronautics and Space Administration Goddard Space Flight Center[EB/OL]. (2012-05). http://gmat.gsfc.nasa.gov/index.html
|
[14] |
MELAMED N. Development of a handbook and an on-line tool on defending Earth against Potentially Hazardous Objects[J]. Acta Astronautica, 2013, 90(1): 165-172 doi: 10.1016/j.actaastro.2012.03.021
|
[15] |
VARDAXIS G, WIE B. Near-Earth object intercept trajectory design for planetary defense[J]. Acta Astronautica, 2014, 101: 1-15 doi: 10.1016/j.actaastro.2014.04.006
|
[16] |
VARDAXIS G, WIE B. Development of an asteroid mission design software tool for planetary defense[C]//3rd Planetary Defense Conference. Flagstaff, USA, 2013
|
[17] |
CANO J L, BELLEI G, MARTÍN J. NEO Threat mitigation software tools within the NEO shield project and application to 2015 PDC[C]//4th IAA Planetary Defense Conference-PDC 2015. Frascati, Roma, Italy, 2015
|
[18] |
CANO J L, BELLEI G, MARTÍN J. Integrated END-TO-END NEO threat mitigation software suite[C]//64th International Astronautical Congress. Beijing, China, 2013
|
[19] |
WANG Yuheng, SONG Rui, CHEN Linghui, et al. Research trends and reflections on international near-earth asteroid security defense[J]. Space Debris Research, 2018, 18(4): 1-10
|
[20] |
LI Honglin, DANG Lifang. Progress of U. S. -European joint near-earth asteroid defense mission[J]. Space Debris Research, 2021, 21(2): 35-39
|
[21] |
WU Weiren, GONG Zizheng, TANG Yuhua, et al. Response to risk of near-earth asteroid impact[J]. Strategic Study of CAE, 2022, 24(2): 140-151
|
[22] |
LI Haitao, LIU Jianjun, CHEN Shaowu, et al. Discussion on the requirements and feasibility of constructing China’s near-Earth asteroids radar system[J]. Scientia Sinica Informationis, 2021, 51(2): 325-346 doi: 10.1360/SSI-2020-0033
|
[23] |
MA Pinzhong. Design and research of space telescope[J]. Optics and Precision Engineering, 1994, 2(6): 67-74
|
[24] |
WANG Xintao, ZHENG Jianhua, LI Mingtao. Study on observation simulation for space-based potentially hazardous asteroids warning mission on Earth trailing heliocentric orbit[J]. Optics and Precision Engineering, 2020, 28(11): 2563-2571 doi: 10.37188/OPE.20202811.2563
|
[25] |
WANG Xintao, ZHENG Jianhua, LI Mingtao, et al. Warning of asteroids approaching Earth from the sunward direction using two Earth-leading heliocentric orbiting telescopes[J]. Icarus, 2022, 377: 114906 doi: 10.1016/j.icarus.2022.114906
|
[26] |
TANG Yuhua, WU Weiren, LI Mingtao, et al. Near-Earth asteroids observation system in cislunar space[J]. Scientia Sinica Informationis, 2022, 52(7): 1169-1185 doi: 10.1360/SSI-2022-0011
|
[27] |
SONG Guoming, CHEN Chun, GONG Zhizhong, et al. Experimental study on momentum coupling law of interaction between pulse laser and asteroid like material[C]//Dubai: The 71th International Astronautical Congress, 2021
|
[28] |
LI Mingtao, WANG Yirui, WANG Y L, et al. Enhanced kinetic impactor for defecting large potentially hazardous asteroids via maneuvering space rocks[J]. Scientific Reports, 2020(10): 1-15
|
[29] |
WANG Y R, LI M T, GONG Z Z, et al. Assembled kinetic impactor for deflecting asteroids by combining the spacecraft with the launch vehicle upper stage[J]. Icarus, 2021, 368: 114596 doi: 10.1016/j.icarus.2021.114596
|
[30] |
LI Yi, LIU Sen, CHEN Hong, et al. Application of NTS in near-Earth asteroid impact and defense[R]. Mianyang: First National Planetary Defense Symposium, 2018
|
[31] |
LUO Yue, WANG Lei, DANG Leining, et al. Arcjet ablation experiment to simulate the Chelyabinsk asteroid entry[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(5): 1362-1370
|
[32] |
SUN Haihao, LUO Yue, DANG Leining, et al. The Melting Ablation Analysis of Meteorite in High Temperature Flow[R]. Internet: 7th Planetary Defense Conference, 2021
|
[33] |
GONG Hongming, CHANG Yu, LIAO Zhenyang, et al. Development and Test Capability of Ultra-High-Speed High Enthalpy Expansion Pipe Wind Tunnel[R]. Nanjing: 3rd National Planetary Defense Symposium, 2020
|
[34] |
LIU Sen, DANG Leining, ZHAO Junyao, et al. Hypervelocity issues of Earth impact by asteroids[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(6): 1311-1327
|
[35] |
DANG Leining, LIU Sen, BAI Zhiyong, et al. Sensitivity research on models of Earth entry and impact effects by asteroids[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(1): 278-292
|
[36] |
WANG Zonghao, DANG Leining, LIU Sen. Meteorite sonic boom research strategy and ballistic range test[J]. Space Debris Research, 2020, 20(3): 1-8
|
[37] |
GONG Jian, ZHANG Wei. Analysis on legitimacy of near-earth objects defense[J]. Space Debris Research, 2019, 19(3): 50-56
|
[38] |
Cneos[EB/OL]. (2015-01-01)[2020-04-20]. https://cneos.jpl.nasa.gov/pd/cs.html
|
[39] |
Sensitivity to uncertainty in planetary defense risk assessment [EB/OL]. (2015-07-08) [2023-06-03]. https://ntrs.nasa.gov/api/citations/20160008942/downloads/20160008942.pdf
|
[40] |
Asteroid Generated Tsunami: Summary of NASA/NOAA Workshop [EB/OL]. (2017-01-01) [2023-06-05]. https://ntrs.nasa.gov/api/citations/20170005214/downloads/20170005214.pdf
|
[41] |
Tunguska Workshop: Applying Modern Tools to Understand the 1908 Tunguska Impact [EB/OL]. (2018-12-01) [2023-06-08]. https://ntrs.nasa.gov/api/citations/20190002302/downloads/20190002302.pdf
|
[42] |
REDDY V, KELLEY M S, FARNOCCHIA D, et al. Near-Earth asteroid 2012 TC4 observing campaign: results from a global planetary defense exercise[J]. Icarus, 2019, 326: 133-150 doi: 10.1016/j.icarus.2019.02.018
|
[43] |
NASA/JPL NEO Deflection App[EB/OL]. [2023-06-08]. https://cneos.jpl.nasa.gov/nda/nda.html
|