| Citation: | JI Jianghui, LI Haitao, ZHANG Junbo, LI Dong, FANG Liang, WANG Su, DENG Lei, CHEN Guo, LI Fei, DONG Yao, LI Baoquan, GAO Xiaodong, XIAN Hao. Closeby Habitable Exoplanet Survey (CHES): an Astrometry Mission for Probing Nearby Habitable Planets (in Chinese). Chinese Journal of Space Science, 2024, 44(2): 193-214 doi: 10.11728/cjss2024.02.yg03 |
| [1] |
MAYOR M, QUELOZ D. A Jupiter-mass companion to a solar-type star[J]. Nature, 1995, 378(6555): 355-359 doi: 10.1038/378355a0
|
| [2] |
Exoplanet Team. The Extrasolar Planets Encyclopaedia[OL]. [1995-02]. http://www.exoplanet.eu/
|
| [3] |
National Academies of Sciences·Engineering·Medicine, Division on Engineering and Physical Sciences, Space Studies Board, et al. Pathways to Discovery in Astronomy and Astrophysics for the 2020s[R]. Washington: The National Academies Press, 2023
|
| [4] |
European Space Agency (ESA). Voyage 2050 Long-Term Planning of the ESA Science Programme White Papers[OL] (2023-02-07). https://www.cosmos.esa.int/web/voyage-2050/white-papers
|
| [5] |
“中国学科及前沿领域发展战略研究(2021-2035)”项目组. 中国天文学2035发展战略[M]. 北京: 科学出版社, 2023: 8
Project team of Research on the Development Strategy of Chinese Disciplines and Frontier Fields (2021-2035). Chinese Astronomy 2035 Development Strategy[M]. Beijing: Science Press, 2023: 8
|
| [6] |
WU Ji, WANG Chi, FAN Quanlin. Review on 11 years of implementation of Strategic Priority Program (SPP) on space science and its prospect[J]. Bulletin of Chinese Academy of Sciences, 2022, 37(8): 1019-1030
|
| [7] |
The State Council Information Office of the People’s Republic of China. 2021 China’s aerospace white paper[OL]. [2022-01]. https://www.gov.cn/zhengce/2022-01/28/content_5670920.htm
|
| [8] |
LINDEGREN L, PERRYMAN M A C. GAIA: global astrometric interferometer for astrophysics[J]. Astronomy and Astrophysics Supplement Series, 1996, 116(3): 579-595 doi: 10.1051/aas:1996136
|
| [9] |
CLEMENTINI G, RIPEPI V, LECCIA S, et al. Gaia Data Release 1. The Cepheid and RR Lyrae star pipeline and its application to the south ecliptic pole region[J]. Astronomy & Astrophysics, 2016, 595: A133
|
| [10] |
KOCH D G, BORUCKI W J, WEBSTER L, et al. Kepler: a space mission to detect Earth-class exoplanets[C]//Proceedings of SPIE 3356, Space Telescopes and Instruments V. Kona: SPIE, 1998: 599-607
|
| [11] |
BORUCKI W J, KOCH D G, BASRI G, et al. Characteristics of planetary candidates observed by Kepler. II. Analysis of the first four months of data[J]. The Astrophysical Journal, 2011, 736(1): 19 doi: 10.1088/0004-637X/736/1/19
|
| [12] |
RICKER G R, WINN J N, VANDERSPEK R, et al. Transiting exoplanet survey satellite[J]. Journal of Astronomical Telescopes, Instruments, and Systems, 2015, 1(1): 014003
|
| [13] |
BROEG C, FORTIER A, EHRENREICH D, et al. CHEOPS: A transit photometry mission for ESA’s small mission programme[J]. EPJ Web of Conferences, 2013, 47: 03005 doi: 10.1051/epjconf/20134703005
|
| [14] |
GARDNER J P, MATHER J C, CLAMPIN M, et al. The James Webb space telescope[J]. Space Science Reviews, 2006, 123(4): 485-606 doi: 10.1007/s11214-006-8315-7
|
| [15] |
GAO Ming, ZHAO Guangheng, GU Yidong. Space science and application mission in China’s space station[J]. Bulle tin of Chinese Academy of Sciences, 2015, 30(6): 721-732
|
| [16] |
LAUREIJS R, AMIAUX J, ARDUINI S, et al. Euclid definition study report[OL]. arXiv preprint arXiv: 1110.3193, 2011
|
| [17] |
GREEN J, SCHECHTER P, BALTAY C, et al. Wide-Field InfraRed Survey Telescope (WFIRST) final report[OL]. arXiv preprint arXiv: 1208.4012, 2012
|
| [18] |
RAGAZZONI R, MAGRIN D, RAUER H, et al. PLATO: a multiple telescope spacecraft for exo-planets hunting[C]//Proceedings of SPIE 9904, Space Telescopes and Instrumentation 2016: Optical, Infrared, and Millimeter Wave. Edinburgh: SPIE, 2016: 990428
|
| [19] |
TINETTI G, DROSSART P, ECCLESTON P, et al. The science of ARIEL (atmospheric remote-sensing infrared exoplanet large-survey)[C]//Proceedings of SPIE 9904, Space Telescopes and Instrumentation 2016: Optical, Infrared, and Millimeter Wave. Edinburgh: SPIE, 2016: 99041X
|
| [20] |
The LUVOIR Team. The LUVOIR mission concept study final report[OL]. arXiv preprint arXiv: 1912.06219, 2019
|
| [21] |
JI J H, LI H T, ZHANG J B, et al. CHES: a space-borne astrometric mission for the detection of habitable planets of the nearby solar-type stars[J]. Research in Astronomy and Astrophysics, 2022, 22(7): 072003 doi: 10.1088/1674-4527/ac77e4
|
| [22] |
CHES collaboration. Closeby habitable exoplanet survey[OL]. [2023-04]. http://www.ps.pmo.cas.cn/CHES/
|
| [23] |
GE J, ZHANG H, ZANG W C, et al. ET white paper: to find the first Earth 2.0[OL]. arXiv preprint arXiv: 2206.06693, 2022
|
| [24] |
周济林, 谢基伟, 葛健, 等. 空间系外行星探测与研究进展[J]. 空间科学学报, 2024, 44(1): 5-18 doi: 10.11728/cjss2024.01.2024-yg01
ZHOU Jilin, XIE Jiwei, GE Jian, et al. Progress on exoplanet detection and research in space[J]. Chinese Journal of Space Science, 2024, 44(1): 5-18 doi: 10.11728/cjss2024.01.2024-yg01
|
| [25] |
WANG W, ZHAI M, ZHAO G, et al. The Tianlin mission: a 6 m UV/Opt/IR space telescope to explore habitable worlds and the universe[J]. Research in Astronomy and Astrophysics, 2023, 23(9): 095028 doi: 10.1088/1674-4527/ace90f
|
| [26] |
KASTING J F, WHITMIRE D P, REYNOLDS R T. Habitable zones around main sequence stars[J]. Icarus, 1993, 101(1): 108-128 doi: 10.1006/icar.1993.1010
|
| [27] |
ANGLADA-ESCUDÉ G, AMADO P J, BARNES J, et al. A terrestrial planet candidate in a temperate orbit around Proxima Centauri[J]. Nature, 2016, 536(7617): 437-440 doi: 10.1038/nature19106
|
| [28] |
GILLON M, TRIAUD A H M J, DEMORY B O, et al. Seven temperate terrestrial planets around the nearby ultracool dwarf star TRAPPIST-1[J]. Nature, 2017, 542(7642): 456-460 doi: 10.1038/nature21360
|
| [29] |
BRYSON S, COUGHLIN J, BATALHA N M et al. A probabilistic approach to kepler completeness and reliability for exoplanet occurrence rates[J]. The Astronomical Journal, 2020, 159(6): 279 doi: 10.3847/1538-3881/ab8a30
|
| [30] |
CHEN G, PALLÉ E, WELBANKS L, et al. The GTC exoplanet transit spectroscopy survey. IX. Detection of haze, Na, K, and Li in the super-Neptune WASP-127b[J]. Astronomy & Astrophysics, 2018, 616: A145 doi: 10.1051/0004-6361/201833033
|
| [31] |
YAN F, HENNING T. An extended hydrogen envelope of the extremely hot giant exoplanet KELT-9b[J]. Nature Astronomy, 2018, 2(9): 714-718 doi: 10.1038/s41550-018-0503-3
|
| [32] |
YAN F, CASASAYAS-BARRIS N, MOLAVERDIKHANI K, et al. Ionized calcium in the atmospheres of two ultra-hot exoplanets WASP-33b and KELT-9b[J]. Astronomy & Astrophysics, 2019, 632: A69 doi: 10.1051/0004-6361/201936396
|
| [33] |
CHEN G, CASASAYAS-BARRIS N, PALLÉ E, et al. Detection of Na, K, and Hα absorption in the atmosphere of WASP-52b using ESPRESSO[J]. Astronomy & Astrophysics, 2020, 635: A171 doi: 10.1051/0004-6361/20193698
|
| [34] |
JIANG C, CHEN G, MURGAS F, et al. Confirmation of TiO absorption and tentative detection of MgH and CrH in the atmosphere of HAT-P-41b[OL]. arXiv preprint arXiv: 2311.13840, 2023 doi: 10.1051/0004-6361/202347989
|
| [35] |
YANG Y H, CHEN G, WANG S H, et al. High-resolution Transmission Spectroscopy of Ultrahot Jupiter WASP-33b with NEID[J]. The Astronomical Journal, 2024, 167(1): 36 doi: 10.3847/1538-3881/ad10a3
|
| [36] |
JWST Transiting Exoplanet Community Early Release Science Team. Identification of carbon dioxide in an exoplanet atmosphere[J]. Nature, 2023, 614(7949): 649-652 doi: 10.1038/s41586-022-05269-w
|
| [37] |
FEINSTEIN A D, RADICA M, WELBANKS L, et al. Early release science of the exoplanet WASP-39b with JWST NIRISS[J]. Nature, 2023, 614(7949): 670-675 doi: 10.1038/s41586-022-05674-1
|
| [38] |
ALDERSON L, WAKEFORD H R, ALAM M K, et al. Early release science of the exoplanet WASP-39b with JWST NIRSpec G395H[J]. Nature, 2023, 614(7949): 664-669 doi: 10.1038/s41586-022-05591-3
|
| [39] |
RUSTAMKULOV Z, SING D K, MUKHERJEE S, et al. early release science of the exoplanet WASP-39b with JWST NIRSpec PRISM[J]. Nature, 2023, 614(7949): 659-663 doi: 10.1038/s41586-022-05677-y
|
| [40] |
AHRER E M, STEVENSON K B, MANSFIELD M, et al. Early release science of the exoplanet WASP-39b with JWST NIRCam[J]. Nature, 2023, 614(7949): 653-658 doi: 10.1038/s41586-022-05590-4
|
| [41] |
TSAI S M, LEE E K H, POWELL D, et al. Photochemically produced SO2 in the atmosphere of WASP-39b[J]. Nature, 2023, 617(7961): 483-487 doi: 10.1038/s41586-023-05902-2
|
| [42] |
DYREK A, MIN M, DECIN L, et al. SO2, silicate clouds, but no CH4 detected in a warm neptune[J]. Nature, 2024, 625(7993): 51-54 doi: 10.1038/s41586-023-06849-0
|
| [43] |
GRANT D, LEWIS N K, WAKEFORD H R, et al. JWST-TST DREAMS: quartz clouds in the atmosphere of WASP-17b[J]. The Astrophysical Journal Letters, 2023, 956(2): L32 doi: 10.3847/2041-8213/acfc3b
|
| [44] |
MADHUSUDHAN N, SARKAR S, CONSTANTINOU S, et al. Carbon-bearing molecules in a possible Hycean atmosphere[J]. The Astrophysical Journal Letters, 2023, 956(1): L13 doi: 10.3847/2041-8213/acf577
|
| [45] |
LIM O, BENNEKE B, DOYON R, et al. Atmospheric reconnaissance of TRAPPIST-1 b with JWST/NIRISS: Evidence for strong stellar contamination in the transmission spectra[J]. The Astrophysical Journal Letters, 2023, 955(1): L22 doi: 10.3847/2041-8213/acf7c4
|
| [46] |
GREENE T P, BELL T J, DUCROT E, et al. Thermal emission from the Earth-sized exoplanet TRAPPIST-1 b using JWST[J]. Nature, 2023, 618(7963): 39-42 doi: 10.1038/s41586-023-05951-7
|
| [47] |
ZIEBA S, KREIDBERG L, DUCROT E, et al. No thick carbon dioxide atmosphere on the rocky exoplanet TRAPPIST-1 c[J]. Nature, 2023, 620(7975): 746-749 doi: 10.1038/s41586-023-06232-z
|
| [48] |
ZAIN P S, DE ELÍA G C, RONCO M P, et al. Planetary formation and water delivery in the habitable zone around solar-type stars in different dynamical environments[J]. Astronomy & Astrophysics, 2018, 609: A76 doi: 10.1051/0004-6361/201730848
|
| [49] |
ZHANG X. Atmospheric regimes and trends on exoplanets and brown dwarfs[J]. Research in Astronomy and Astrophysics, 2020, 20(7): 99 doi: 10.1088/1674-4527/20/7/99
|
| [50] |
LIU B B, JI J H. A tale of planet formation: from dust to planets[J]. Research in Astronomy and Astrophysics, 2020, 20(10): 164 doi: 10.1088/1674-4527/20/10/164
|
| [51] |
ZHU W, DONG S B. Exoplanet statistics and theoretical implications[J]. Annual Review of Astronomy and Astrophysics, 2021, 59: 291-336 doi: 10.1146/annurev-astro-112420-020055
|
| [52] |
TRAUB W A. Kepler exoplanets: a new method of population analysis[OL]. arXiv preprint arXiv: 1605.02255, 2016
|
| [53] |
GAUDI B S, SEAGER S, MENNESSON B, et al. The Habitable Exoplanet Observatory (HabEx) Mission Concept Study Final Report[OL]. arXiv preprint arXiv: 2001.06683, 2020 doi: 10.48550/arXiv.2001.06683
|
| [54] |
SNELLEN I, DE KOK R, BIRKBY J L, et al. Combining high-dispersion spectroscopy with high contrast imaging: probing rocky planets around our nearest neighbors[J]. Astronomy & Astrophysics, 2015, 576: A59 doi: 10.1051/0004-6361/201425018
|
| [55] |
WANG J, MAWET D, RUANE G, et al. Observing exoplanets with high dispersion coronagraphy. I. The scientific potential of current and next-generation large ground and space telescopes[J]. The Astronomical Journal, 2017, 153(4): 183 doi: 10.3847/1538-3881/aa6474
|
| [56] |
SKIDMORE W, TMT International Science Development Teams, TNT Science Advisory Committee. Thirty meter telescope detailed science case: 2015[J]. Research in Astronomy and Astrophysics, 2015, 15(12): 1945-2140 doi: 10.1088/1674-4527/15/12/001
|
| [57] |
KASPER M, CERPA URRA N, PATHAK P, et al. PCS — A Roadmap for Exoearth Imaging with the ELT[J]. The Messenger, 2021, 182: 38-43 doi: 10.18727/0722-6691/5221
|
| [58] |
KALTENEGGER L. How to characterize habitable worlds and signs of life[J]. Annual Review of Astronomy and Astrophysics, 2017, 55: 433-485 doi: 10.1146/annurev-astro-082214-122238
|
| [59] |
OWEN J E, WU Y Q. Kepler planets: a tale of evaporation[J]. The Astrophysical Journal, 2013, 775(2): 105 doi: 10.1088/0004-637X/775/2/105
|
| [60] |
OWEN J E, WU Y Q. The evaporation valley in the Kepler planets[J]. The Astrophysical Journal, 2017, 847(1): 29 doi: 10.3847/1538-4357/aa890a
|
| [61] |
JIN S, MORDASINI C, PARMENTIER V, et al. Planetary population synthesis coupled with atmospheric escape: a statistical view of evaporation[J]. The Astrophysical Journal, 2014, 795(1): 65 doi: 10.1088/0004-637X/795/1/65
|
| [62] |
JOHNSON J A, PETIGURA E A, FULTON B J, et al. The California-Kepler survey. II. Precise physical properties of 2025 Kepler planets and their host stars[J]. The Astronomical Journal, 2017, 154(3): 108 doi: 10.3847/1538-3881/aa80e7
|
| [63] |
FULTON B J, PETIGURA E A, HOWARD A W, et al. The California-Kepler Survey. III. A Gap in the Radius Distribution of Small Planets[J]. The Astronomical Journal, 2017, 154(3): 109 doi: 10.3847/1538-3881/aa80eb
|
| [64] |
JIN S, MORDASINI C. Compositional imprints in density-distance-time: a rocky composition for close-in low-mass exoplanets from the location of the valley of evaporation[J]. The Astrophysical Journal, 2018, 853(2): 163 doi: 10.3847/1538-4357/aa9f1e
|
| [65] |
PAN M R, WANG S, JI J H. Near mean motion resonance of terrestrial planet pair induced by giant planet: application to Kepler-68 system[J]. Monthly Notices of the Royal Astronomical Society, 2020, 496(4): 4688-4699 doi: 10.1093/mnras/staa1884
|
| [66] |
WANG S, LIN D N C. Dynamical evolution of closely packed multiple planetary systems subject to atmospheric mass loss[J]. The Astronomical Journal, 2023, 165(4): 174 doi: 10.3847/1538-3881/acc070
|
| [67] |
RAYMOND S N, MANDELL A M, SIGURDSSON S. Exotic Earths: forming habitable worlds with giant planet migration[J]. Science, 2006, 313(5792): 1413-1416 doi: 10.1126/science.1130461
|
| [68] |
MORDASINI C, ALIBERT Y, BENZ W, et al. Extrasolar planet population synthesis. II. Statistical comparison with observations[J]. Astronomy & Astrophysics, 2009, 501(3): 1161-1184 doi: 10.1051/0004-6361/200810697
|
| [69] |
CHIANG E, LAUGHLIN G. The minimum-mass extrasolar nebula: in situ formation of close-in super-Earths[J]. Monthly Notices of the Royal Astronomical Society, 2013, 431(4): 3444-3455 doi: 10.1093/mnras/stt424
|
| [70] |
HUANG P H, ISELLA A, LI H, et al. Identifying anticyclonic vortex features produced by the rossby wave instability in protoplanetary disks[J]. The Astrophysical Journal, 2018, 867(1): 3 doi: 10.3847/1538-4357/aae317
|
| [71] |
HUANG P H, DONG R B, LI H, et al. The observability of vortex-driven spiral arms in protoplanetary disks: basic spiral properties[J]. The Astrophysical Journal Letters, 2019, 883(2): L39 doi: 10.3847/2041-8213/ab40c4
|
| [72] |
HUANG P H, LI H, ISELLA A, et al. Meso-scale instability triggered by dust feedback in dusty rings: origin and observational implications[J]. The Astrophysical Journal, 2020, 893(2): 89 doi: 10.3847/1538-4357/ab8199
|
| [73] |
JIN S, LI S T, ISELLA A, et al. Modeling dust emission of HL TAU disk based on planet-disk interactions[J]. The Astrophysical Journal, 2016, 818(1): 76 doi: 10.3847/0004-637X/818/1/76
|
| [74] |
JI J H, LI G Y, LIU L. The dynamical simulations of the planets orbiting GJ 876[J]. The Astrophysical Journal, 2002, 572(2): 1041-1047 doi: 10.1086/340350
|
| [75] |
JI J, LIU L, KINOSHITA H, LI G. Could the 47 Ursae Majoris planetary system be a second solar system: predicting the Earth-like planets[J]. The Astrophysical Journal, 2005, 631(2): 1191-1197 doi: 10.1086/432787
|
| [76] |
JI J H, KINOSHITA H, LIU L, et al. The secular evolution and dynamical architecture of the Neptunian triplet planetary system HD 69830[J]. The Astrophysical Journal, 2007, 657(2): 1092-1097 doi: 10.1086/510556
|
| [77] |
WANG S, JI J H, ZHOU J L. Predicting the configuration of a planetary system: KOI-152 observed by Kepler[J]. The Astrophysical Journal, 2012, 753(2): 170 doi: 10.1088/0004-637X/753/2/170
|
| [78] |
WANG S, JI J H. Near 3: 2 and 2: 1 mean motion resonance formation in the systems observed by Kepler[J]. The Astrophysical Journal, 2014, 795(1): 85 doi: 10.1088/0004-637X/795/1/85
|
| [79] |
WANG S, LIN D N C, ZHENG X C, et al. Departure from the exact location of mean motion resonances induced by the gas disk in systems observed by Kepler[J]. The Astronomical Journal, 2021, 161(2): 77 doi: 10.3847/1538-3881/abcfb9
|
| [80] |
PAN M R, WANG S, JI J H. The terrestrial planet formation around M dwarfs: in situ, inward migration, or reversed migration[J]. Monthly Notices of the Royal Astronomical Society, 2022, 510(3): 4134-4145 doi: 10.1093/mnras/stab3611
|
| [81] |
HUANG X M, JI J H. Extremely inclined orbit of the S-type planet γ Cep Ab induced by the eccentric Kozai-Lidov mechanism[J]. The Astronomical Journal, 2022, 164(5): 177 doi: 10.3847/1538-3881/ac8f4c
|
| [82] |
HUANG X M, JI J H, LIU S F, et al. Evolution of planetary obliquity: the eccentric Kozai-Lidov mechanism coupled with tide[J]. The Astrophysical Journal, 2023, 956(1): 45 doi: 10.3847/1538-4357/acf46e
|
| [83] |
BORUCKI W J, KOCH D, BASRI G, et al. Kepler planet-detection mission: introduction and first results[J]. Science, 2010, 327(5968): 977-980 doi: 10.1126/science.1185402
|
| [84] |
BATALHA N M, ROWE J F, BRYSON S T, et al. Planetary candidates observed by Kepler. III. Analysis of the first 16 months of data[J]. The Astrophysical Journal Supplement Series, 2013, 204(2): 24 doi: 10.1088/0067-0049/204/2/24
|
| [85] |
The Theia Collaboration. Theia: faint objects in motion or the new astrometry frontier[OL]. arXiv preprint arXiv: 1707.01348, 2017
|
| [86] |
NEMATI B, SHAO M, GONZALEZ G, et al. The Micro-Arcsecond astrometry small satellite: MASS[C]//Proceedings of SPIE 11443, Space Telescopes and Instrumentation 2020: Optical, Infrared, and Millimeter Wave. SPIE, 2020: 114430O
|
| [87] |
JI J H, KINOSHITA H, LIU L, et al. Could the 55 Cancri planetary system really Be in the 3:1 mean motion resonance[J]. The Astrophysical Journal, 2003, 585(2): L139-L142 doi: 10.1086/374391
|
| [88] |
JI J H, JIN S, TINNEY C G. Forming close-in Earth-like planets via a collision-merger mechanism in late-stage planet formation[J]. The Astrophysical Journal, 2011, 727(1): L5 doi: 10.1088/0004-637X/727/1/L5
|
| [89] |
WANG S, JI J H. Near mean-motion resonances in the system observed by Kepler: affected by mass accretion and type I migration[J]. The Astronomical Journal, 2017, 154(6): 236 doi: 10.3847/1538-3881/aa9216
|
| [90] |
JIN S, DING X J, WANG S, et al. Nii: a Bayesian orbit retrieval code applied to differential astrometry[J]. Monthly Notices of the Royal Astronomical Society, 2022, 509(3): 4608-4619 doi: 10.1093/mnras/stab3317
|
| [91] |
暴春晖, 季江徽, 谭东杰, 等. 基于CHES卫星的模拟观测与轨道反演[J]天文学报, 2023, 已接受
BAO Chunhui, JI Jianghui, TAN Dongjie, et al. Simulation observation and orbital retrieval based on CHES satellite[J]. Acta Astronomica Sinica, 2023, accepted
|
| [92] |
JI J H, TAN D J, BAO C H, et al. PyMsOfa: A python package for the Standards of Fundamental Astronomy (SOFA) service[J]. Research in Astronomy and Astrophysics, 2023, 23(12): 125015 doi: 10.1088/1674-4527/ad0499
|
| [93] |
BAO C H, JI J H, TAN D J, et al. Closeby Habitable Exoplanet Survey (CHES). I. Astrometric noise and planetary detection efficiency due to stellar spots and faculae[J]. The Astronomical Journal, 2024, accepted
|
| [94] |
TAN D J, JI J H, BAO C H, et al. Closeby Habitable Exoplanet Survey (CHES). II. An observation strategy for the target stars[J]. The Astronomical Journal, 2024, submitted
|
| [95] |
SUN Y H, FANG L, ZHANG H. On-orbit calibration method based on distortion gradient reconstruction distortion[J]. Semiconductor Optoelectronics, 2022, 43(4): 802-808
|