JI Jianghui, LI Haitao, ZHANG Junbo, LI Dong, FANG Liang, WANG Su, DENG Lei, CHEN Guo, LI Fei, DONG Yao, LI Baoquan, GAO Xiaodong, XIAN Hao. Closeby Habitable Exoplanet Survey (CHES): an Astrometry Mission for Probing Nearby Habitable Planets (in Chinese). Chinese Journal of Space Science, 2024, 44(2): 193-214 doi: 10.11728/cjss2024.02.yg03
Citation: JI Jianghui, LI Haitao, ZHANG Junbo, LI Dong, FANG Liang, WANG Su, DENG Lei, CHEN Guo, LI Fei, DONG Yao, LI Baoquan, GAO Xiaodong, XIAN Hao. Closeby Habitable Exoplanet Survey (CHES): an Astrometry Mission for Probing Nearby Habitable Planets (in Chinese). Chinese Journal of Space Science, 2024, 44(2): 193-214 doi: 10.11728/cjss2024.02.yg03

Closeby Habitable Exoplanet Survey (CHES): an Astrometry Mission for Probing Nearby Habitable Planets

doi: 10.11728/cjss2024.02.yg03
  • Received Date: 2024-01-01
  • Rev Recd Date: 2024-03-03
  • Available Online: 2024-04-08
  • The Closeby Habitable Exoplanet Survey (CHES) employs state-of-the-art, high-precision astrometry and positioning technology at the microarcsecond level in space. Its primary objective is to conduct a thorough survey of approximately 100 FGK-type stars within the Sun’s proximity (within 10 parsecs), with the goal of detecting potentially habitable Earth-like planets or super-Earths. This pioneering mission involves a detailed census of habitable planets, providing intricate information on their numbers, true masses, and three-dimensional orbits. Notably, CHES marks a historic milestone as the inaugural international space exploration mission exclusively dedicated to the study of terrestrial planets within the nearby habitable zone. CHES’s payload features a cutting-edge optical telescope with a 1.2 m aperture, a field of view measuring 0.44°×0.44°, and a focal length of 36 m. The telescope utilizes a coaxial three-mirror TMA optical imaging system. Impressively, CHES is designed with a positioning measurement accuracy of 1 μas, solidifying its status as the most precise space exploration project globally in terms of positioning accuracy. To achieve the detection objectives of CHES, it is essential to refine and further substantiate the scientific goals through comprehensive argumentation. Overcoming three key technological challenges is crucial: advancing optical systems for large field of view, developing high-quality space telescopes with minimal distortion; breaking through measurement technology for stellar separations at the 10–5 pixel level; and achieving high stability in satellite system attitude control and thermal control precision. CHES stands on the threshold of groundbreaking discoveries, with the exciting prospect of revealing 50 Earth-like planets. This announces a significant leap forward in China’s space science exploration technology.

     

  • [1]
    MAYOR M, QUELOZ D. A Jupiter-mass companion to a solar-type star[J]. Nature, 1995, 378(6555): 355-359 doi: 10.1038/378355a0
    [2]
    Exoplanet Team. The Extrasolar Planets Encyclopaedia[OL]. [1995-02]. http://www.exoplanet.eu/
    [3]
    National Academies of Sciences·Engineering·Medicine, Division on Engineering and Physical Sciences, Space Studies Board, et al. Pathways to Discovery in Astronomy and Astrophysics for the 2020s[R]. Washington: The National Academies Press, 2023
    [4]
    European Space Agency (ESA). Voyage 2050 Long-Term Planning of the ESA Science Programme White Papers[OL] (2023-02-07). https://www.cosmos.esa.int/web/voyage-2050/white-papers
    [5]
    “中国学科及前沿领域发展战略研究(2021-2035)”项目组. 中国天文学2035发展战略[M]. 北京: 科学出版社, 2023: 8

    Project team of Research on the Development Strategy of Chinese Disciplines and Frontier Fields (2021-2035). Chinese Astronomy 2035 Development Strategy[M]. Beijing: Science Press, 2023: 8
    [6]
    WU Ji, WANG Chi, FAN Quanlin. Review on 11 years of implementation of Strategic Priority Program (SPP) on space science and its prospect[J]. Bulletin of Chinese Academy of Sciences, 2022, 37(8): 1019-1030
    [7]
    The State Council Information Office of the People’s Republic of China. 2021 China’s aerospace white paper[OL]. [2022-01]. https://www.gov.cn/zhengce/2022-01/28/content_5670920.htm
    [8]
    LINDEGREN L, PERRYMAN M A C. GAIA: global astrometric interferometer for astrophysics[J]. Astronomy and Astrophysics Supplement Series, 1996, 116(3): 579-595 doi: 10.1051/aas:1996136
    [9]
    CLEMENTINI G, RIPEPI V, LECCIA S, et al. Gaia Data Release 1. The Cepheid and RR Lyrae star pipeline and its application to the south ecliptic pole region[J]. Astronomy & Astrophysics, 2016, 595: A133
    [10]
    KOCH D G, BORUCKI W J, WEBSTER L, et al. Kepler: a space mission to detect Earth-class exoplanets[C]//Proceedings of SPIE 3356, Space Telescopes and Instruments V. Kona: SPIE, 1998: 599-607
    [11]
    BORUCKI W J, KOCH D G, BASRI G, et al. Characteristics of planetary candidates observed by Kepler. II. Analysis of the first four months of data[J]. The Astrophysical Journal, 2011, 736(1): 19 doi: 10.1088/0004-637X/736/1/19
    [12]
    RICKER G R, WINN J N, VANDERSPEK R, et al. Transiting exoplanet survey satellite[J]. Journal of Astronomical Telescopes, Instruments, and Systems, 2015, 1(1): 014003
    [13]
    BROEG C, FORTIER A, EHRENREICH D, et al. CHEOPS: A transit photometry mission for ESA’s small mission programme[J]. EPJ Web of Conferences, 2013, 47: 03005 doi: 10.1051/epjconf/20134703005
    [14]
    GARDNER J P, MATHER J C, CLAMPIN M, et al. The James Webb space telescope[J]. Space Science Reviews, 2006, 123(4): 485-606 doi: 10.1007/s11214-006-8315-7
    [15]
    GAO Ming, ZHAO Guangheng, GU Yidong. Space science and application mission in China’s space station[J]. Bulle tin of Chinese Academy of Sciences, 2015, 30(6): 721-732
    [16]
    LAUREIJS R, AMIAUX J, ARDUINI S, et al. Euclid definition study report[OL]. arXiv preprint arXiv: 1110.3193, 2011
    [17]
    GREEN J, SCHECHTER P, BALTAY C, et al. Wide-Field InfraRed Survey Telescope (WFIRST) final report[OL]. arXiv preprint arXiv: 1208.4012, 2012
    [18]
    RAGAZZONI R, MAGRIN D, RAUER H, et al. PLATO: a multiple telescope spacecraft for exo-planets hunting[C]//Proceedings of SPIE 9904, Space Telescopes and Instrumentation 2016: Optical, Infrared, and Millimeter Wave. Edinburgh: SPIE, 2016: 990428
    [19]
    TINETTI G, DROSSART P, ECCLESTON P, et al. The science of ARIEL (atmospheric remote-sensing infrared exoplanet large-survey)[C]//Proceedings of SPIE 9904, Space Telescopes and Instrumentation 2016: Optical, Infrared, and Millimeter Wave. Edinburgh: SPIE, 2016: 99041X
    [20]
    The LUVOIR Team. The LUVOIR mission concept study final report[OL]. arXiv preprint arXiv: 1912.06219, 2019
    [21]
    JI J H, LI H T, ZHANG J B, et al. CHES: a space-borne astrometric mission for the detection of habitable planets of the nearby solar-type stars[J]. Research in Astronomy and Astrophysics, 2022, 22(7): 072003 doi: 10.1088/1674-4527/ac77e4
    [22]
    CHES collaboration. Closeby habitable exoplanet survey[OL]. [2023-04]. http://www.ps.pmo.cas.cn/CHES/
    [23]
    GE J, ZHANG H, ZANG W C, et al. ET white paper: to find the first Earth 2.0[OL]. arXiv preprint arXiv: 2206.06693, 2022
    [24]
    周济林, 谢基伟, 葛健, 等. 空间系外行星探测与研究进展[J]. 空间科学学报, 2024, 44(1): 5-18 doi: 10.11728/cjss2024.01.2024-yg01

    ZHOU Jilin, XIE Jiwei, GE Jian, et al. Progress on exoplanet detection and research in space[J]. Chinese Journal of Space Science, 2024, 44(1): 5-18 doi: 10.11728/cjss2024.01.2024-yg01
    [25]
    WANG W, ZHAI M, ZHAO G, et al. The Tianlin mission: a 6 m UV/Opt/IR space telescope to explore habitable worlds and the universe[J]. Research in Astronomy and Astrophysics, 2023, 23(9): 095028 doi: 10.1088/1674-4527/ace90f
    [26]
    KASTING J F, WHITMIRE D P, REYNOLDS R T. Habitable zones around main sequence stars[J]. Icarus, 1993, 101(1): 108-128 doi: 10.1006/icar.1993.1010
    [27]
    ANGLADA-ESCUDÉ G, AMADO P J, BARNES J, et al. A terrestrial planet candidate in a temperate orbit around Proxima Centauri[J]. Nature, 2016, 536(7617): 437-440 doi: 10.1038/nature19106
    [28]
    GILLON M, TRIAUD A H M J, DEMORY B O, et al. Seven temperate terrestrial planets around the nearby ultracool dwarf star TRAPPIST-1[J]. Nature, 2017, 542(7642): 456-460 doi: 10.1038/nature21360
    [29]
    BRYSON S, COUGHLIN J, BATALHA N M et al. A probabilistic approach to kepler completeness and reliability for exoplanet occurrence rates[J]. The Astronomical Journal, 2020, 159(6): 279 doi: 10.3847/1538-3881/ab8a30
    [30]
    CHEN G, PALLÉ E, WELBANKS L, et al. The GTC exoplanet transit spectroscopy survey. IX. Detection of haze, Na, K, and Li in the super-Neptune WASP-127b[J]. Astronomy & Astrophysics, 2018, 616: A145 doi: 10.1051/0004-6361/201833033
    [31]
    YAN F, HENNING T. An extended hydrogen envelope of the extremely hot giant exoplanet KELT-9b[J]. Nature Astronomy, 2018, 2(9): 714-718 doi: 10.1038/s41550-018-0503-3
    [32]
    YAN F, CASASAYAS-BARRIS N, MOLAVERDIKHANI K, et al. Ionized calcium in the atmospheres of two ultra-hot exoplanets WASP-33b and KELT-9b[J]. Astronomy & Astrophysics, 2019, 632: A69 doi: 10.1051/0004-6361/201936396
    [33]
    CHEN G, CASASAYAS-BARRIS N, PALLÉ E, et al. Detection of Na, K, and Hα absorption in the atmosphere of WASP-52b using ESPRESSO[J]. Astronomy & Astrophysics, 2020, 635: A171 doi: 10.1051/0004-6361/20193698
    [34]
    JIANG C, CHEN G, MURGAS F, et al. Confirmation of TiO absorption and tentative detection of MgH and CrH in the atmosphere of HAT-P-41b[OL]. arXiv preprint arXiv: 2311.13840, 2023 doi: 10.1051/0004-6361/202347989
    [35]
    YANG Y H, CHEN G, WANG S H, et al. High-resolution Transmission Spectroscopy of Ultrahot Jupiter WASP-33b with NEID[J]. The Astronomical Journal, 2024, 167(1): 36 doi: 10.3847/1538-3881/ad10a3
    [36]
    JWST Transiting Exoplanet Community Early Release Science Team. Identification of carbon dioxide in an exoplanet atmosphere[J]. Nature, 2023, 614(7949): 649-652 doi: 10.1038/s41586-022-05269-w
    [37]
    FEINSTEIN A D, RADICA M, WELBANKS L, et al. Early release science of the exoplanet WASP-39b with JWST NIRISS[J]. Nature, 2023, 614(7949): 670-675 doi: 10.1038/s41586-022-05674-1
    [38]
    ALDERSON L, WAKEFORD H R, ALAM M K, et al. Early release science of the exoplanet WASP-39b with JWST NIRSpec G395H[J]. Nature, 2023, 614(7949): 664-669 doi: 10.1038/s41586-022-05591-3
    [39]
    RUSTAMKULOV Z, SING D K, MUKHERJEE S, et al. early release science of the exoplanet WASP-39b with JWST NIRSpec PRISM[J]. Nature, 2023, 614(7949): 659-663 doi: 10.1038/s41586-022-05677-y
    [40]
    AHRER E M, STEVENSON K B, MANSFIELD M, et al. Early release science of the exoplanet WASP-39b with JWST NIRCam[J]. Nature, 2023, 614(7949): 653-658 doi: 10.1038/s41586-022-05590-4
    [41]
    TSAI S M, LEE E K H, POWELL D, et al. Photochemically produced SO2 in the atmosphere of WASP-39b[J]. Nature, 2023, 617(7961): 483-487 doi: 10.1038/s41586-023-05902-2
    [42]
    DYREK A, MIN M, DECIN L, et al. SO2, silicate clouds, but no CH4 detected in a warm neptune[J]. Nature, 2024, 625(7993): 51-54 doi: 10.1038/s41586-023-06849-0
    [43]
    GRANT D, LEWIS N K, WAKEFORD H R, et al. JWST-TST DREAMS: quartz clouds in the atmosphere of WASP-17b[J]. The Astrophysical Journal Letters, 2023, 956(2): L32 doi: 10.3847/2041-8213/acfc3b
    [44]
    MADHUSUDHAN N, SARKAR S, CONSTANTINOU S, et al. Carbon-bearing molecules in a possible Hycean atmosphere[J]. The Astrophysical Journal Letters, 2023, 956(1): L13 doi: 10.3847/2041-8213/acf577
    [45]
    LIM O, BENNEKE B, DOYON R, et al. Atmospheric reconnaissance of TRAPPIST-1 b with JWST/NIRISS: Evidence for strong stellar contamination in the transmission spectra[J]. The Astrophysical Journal Letters, 2023, 955(1): L22 doi: 10.3847/2041-8213/acf7c4
    [46]
    GREENE T P, BELL T J, DUCROT E, et al. Thermal emission from the Earth-sized exoplanet TRAPPIST-1 b using JWST[J]. Nature, 2023, 618(7963): 39-42 doi: 10.1038/s41586-023-05951-7
    [47]
    ZIEBA S, KREIDBERG L, DUCROT E, et al. No thick carbon dioxide atmosphere on the rocky exoplanet TRAPPIST-1 c[J]. Nature, 2023, 620(7975): 746-749 doi: 10.1038/s41586-023-06232-z
    [48]
    ZAIN P S, DE ELÍA G C, RONCO M P, et al. Planetary formation and water delivery in the habitable zone around solar-type stars in different dynamical environments[J]. Astronomy & Astrophysics, 2018, 609: A76 doi: 10.1051/0004-6361/201730848
    [49]
    ZHANG X. Atmospheric regimes and trends on exoplanets and brown dwarfs[J]. Research in Astronomy and Astrophysics, 2020, 20(7): 99 doi: 10.1088/1674-4527/20/7/99
    [50]
    LIU B B, JI J H. A tale of planet formation: from dust to planets[J]. Research in Astronomy and Astrophysics, 2020, 20(10): 164 doi: 10.1088/1674-4527/20/10/164
    [51]
    ZHU W, DONG S B. Exoplanet statistics and theoretical implications[J]. Annual Review of Astronomy and Astrophysics, 2021, 59: 291-336 doi: 10.1146/annurev-astro-112420-020055
    [52]
    TRAUB W A. Kepler exoplanets: a new method of population analysis[OL]. arXiv preprint arXiv: 1605.02255, 2016
    [53]
    GAUDI B S, SEAGER S, MENNESSON B, et al. The Habitable Exoplanet Observatory (HabEx) Mission Concept Study Final Report[OL]. arXiv preprint arXiv: 2001.06683, 2020 doi: 10.48550/arXiv.2001.06683
    [54]
    SNELLEN I, DE KOK R, BIRKBY J L, et al. Combining high-dispersion spectroscopy with high contrast imaging: probing rocky planets around our nearest neighbors[J]. Astronomy & Astrophysics, 2015, 576: A59 doi: 10.1051/0004-6361/201425018
    [55]
    WANG J, MAWET D, RUANE G, et al. Observing exoplanets with high dispersion coronagraphy. I. The scientific potential of current and next-generation large ground and space telescopes[J]. The Astronomical Journal, 2017, 153(4): 183 doi: 10.3847/1538-3881/aa6474
    [56]
    SKIDMORE W, TMT International Science Development Teams, TNT Science Advisory Committee. Thirty meter telescope detailed science case: 2015[J]. Research in Astronomy and Astrophysics, 2015, 15(12): 1945-2140 doi: 10.1088/1674-4527/15/12/001
    [57]
    KASPER M, CERPA URRA N, PATHAK P, et al. PCS — A Roadmap for Exoearth Imaging with the ELT[J]. The Messenger, 2021, 182: 38-43 doi: 10.18727/0722-6691/5221
    [58]
    KALTENEGGER L. How to characterize habitable worlds and signs of life[J]. Annual Review of Astronomy and Astrophysics, 2017, 55: 433-485 doi: 10.1146/annurev-astro-082214-122238
    [59]
    OWEN J E, WU Y Q. Kepler planets: a tale of evaporation[J]. The Astrophysical Journal, 2013, 775(2): 105 doi: 10.1088/0004-637X/775/2/105
    [60]
    OWEN J E, WU Y Q. The evaporation valley in the Kepler planets[J]. The Astrophysical Journal, 2017, 847(1): 29 doi: 10.3847/1538-4357/aa890a
    [61]
    JIN S, MORDASINI C, PARMENTIER V, et al. Planetary population synthesis coupled with atmospheric escape: a statistical view of evaporation[J]. The Astrophysical Journal, 2014, 795(1): 65 doi: 10.1088/0004-637X/795/1/65
    [62]
    JOHNSON J A, PETIGURA E A, FULTON B J, et al. The California-Kepler survey. II. Precise physical properties of 2025 Kepler planets and their host stars[J]. The Astronomical Journal, 2017, 154(3): 108 doi: 10.3847/1538-3881/aa80e7
    [63]
    FULTON B J, PETIGURA E A, HOWARD A W, et al. The California-Kepler Survey. III. A Gap in the Radius Distribution of Small Planets[J]. The Astronomical Journal, 2017, 154(3): 109 doi: 10.3847/1538-3881/aa80eb
    [64]
    JIN S, MORDASINI C. Compositional imprints in density-distance-time: a rocky composition for close-in low-mass exoplanets from the location of the valley of evaporation[J]. The Astrophysical Journal, 2018, 853(2): 163 doi: 10.3847/1538-4357/aa9f1e
    [65]
    PAN M R, WANG S, JI J H. Near mean motion resonance of terrestrial planet pair induced by giant planet: application to Kepler-68 system[J]. Monthly Notices of the Royal Astronomical Society, 2020, 496(4): 4688-4699 doi: 10.1093/mnras/staa1884
    [66]
    WANG S, LIN D N C. Dynamical evolution of closely packed multiple planetary systems subject to atmospheric mass loss[J]. The Astronomical Journal, 2023, 165(4): 174 doi: 10.3847/1538-3881/acc070
    [67]
    RAYMOND S N, MANDELL A M, SIGURDSSON S. Exotic Earths: forming habitable worlds with giant planet migration[J]. Science, 2006, 313(5792): 1413-1416 doi: 10.1126/science.1130461
    [68]
    MORDASINI C, ALIBERT Y, BENZ W, et al. Extrasolar planet population synthesis. II. Statistical comparison with observations[J]. Astronomy & Astrophysics, 2009, 501(3): 1161-1184 doi: 10.1051/0004-6361/200810697
    [69]
    CHIANG E, LAUGHLIN G. The minimum-mass extrasolar nebula: in situ formation of close-in super-Earths[J]. Monthly Notices of the Royal Astronomical Society, 2013, 431(4): 3444-3455 doi: 10.1093/mnras/stt424
    [70]
    HUANG P H, ISELLA A, LI H, et al. Identifying anticyclonic vortex features produced by the rossby wave instability in protoplanetary disks[J]. The Astrophysical Journal, 2018, 867(1): 3 doi: 10.3847/1538-4357/aae317
    [71]
    HUANG P H, DONG R B, LI H, et al. The observability of vortex-driven spiral arms in protoplanetary disks: basic spiral properties[J]. The Astrophysical Journal Letters, 2019, 883(2): L39 doi: 10.3847/2041-8213/ab40c4
    [72]
    HUANG P H, LI H, ISELLA A, et al. Meso-scale instability triggered by dust feedback in dusty rings: origin and observational implications[J]. The Astrophysical Journal, 2020, 893(2): 89 doi: 10.3847/1538-4357/ab8199
    [73]
    JIN S, LI S T, ISELLA A, et al. Modeling dust emission of HL TAU disk based on planet-disk interactions[J]. The Astrophysical Journal, 2016, 818(1): 76 doi: 10.3847/0004-637X/818/1/76
    [74]
    JI J H, LI G Y, LIU L. The dynamical simulations of the planets orbiting GJ 876[J]. The Astrophysical Journal, 2002, 572(2): 1041-1047 doi: 10.1086/340350
    [75]
    JI J, LIU L, KINOSHITA H, LI G. Could the 47 Ursae Majoris planetary system be a second solar system: predicting the Earth-like planets[J]. The Astrophysical Journal, 2005, 631(2): 1191-1197 doi: 10.1086/432787
    [76]
    JI J H, KINOSHITA H, LIU L, et al. The secular evolution and dynamical architecture of the Neptunian triplet planetary system HD 69830[J]. The Astrophysical Journal, 2007, 657(2): 1092-1097 doi: 10.1086/510556
    [77]
    WANG S, JI J H, ZHOU J L. Predicting the configuration of a planetary system: KOI-152 observed by Kepler[J]. The Astrophysical Journal, 2012, 753(2): 170 doi: 10.1088/0004-637X/753/2/170
    [78]
    WANG S, JI J H. Near 3: 2 and 2: 1 mean motion resonance formation in the systems observed by Kepler[J]. The Astrophysical Journal, 2014, 795(1): 85 doi: 10.1088/0004-637X/795/1/85
    [79]
    WANG S, LIN D N C, ZHENG X C, et al. Departure from the exact location of mean motion resonances induced by the gas disk in systems observed by Kepler[J]. The Astronomical Journal, 2021, 161(2): 77 doi: 10.3847/1538-3881/abcfb9
    [80]
    PAN M R, WANG S, JI J H. The terrestrial planet formation around M dwarfs: in situ, inward migration, or reversed migration[J]. Monthly Notices of the Royal Astronomical Society, 2022, 510(3): 4134-4145 doi: 10.1093/mnras/stab3611
    [81]
    HUANG X M, JI J H. Extremely inclined orbit of the S-type planet γ Cep Ab induced by the eccentric Kozai-Lidov mechanism[J]. The Astronomical Journal, 2022, 164(5): 177 doi: 10.3847/1538-3881/ac8f4c
    [82]
    HUANG X M, JI J H, LIU S F, et al. Evolution of planetary obliquity: the eccentric Kozai-Lidov mechanism coupled with tide[J]. The Astrophysical Journal, 2023, 956(1): 45 doi: 10.3847/1538-4357/acf46e
    [83]
    BORUCKI W J, KOCH D, BASRI G, et al. Kepler planet-detection mission: introduction and first results[J]. Science, 2010, 327(5968): 977-980 doi: 10.1126/science.1185402
    [84]
    BATALHA N M, ROWE J F, BRYSON S T, et al. Planetary candidates observed by Kepler. III. Analysis of the first 16 months of data[J]. The Astrophysical Journal Supplement Series, 2013, 204(2): 24 doi: 10.1088/0067-0049/204/2/24
    [85]
    The Theia Collaboration. Theia: faint objects in motion or the new astrometry frontier[OL]. arXiv preprint arXiv: 1707.01348, 2017
    [86]
    NEMATI B, SHAO M, GONZALEZ G, et al. The Micro-Arcsecond astrometry small satellite: MASS[C]//Proceedings of SPIE 11443, Space Telescopes and Instrumentation 2020: Optical, Infrared, and Millimeter Wave. SPIE, 2020: 114430O
    [87]
    JI J H, KINOSHITA H, LIU L, et al. Could the 55 Cancri planetary system really Be in the 3:1 mean motion resonance[J]. The Astrophysical Journal, 2003, 585(2): L139-L142 doi: 10.1086/374391
    [88]
    JI J H, JIN S, TINNEY C G. Forming close-in Earth-like planets via a collision-merger mechanism in late-stage planet formation[J]. The Astrophysical Journal, 2011, 727(1): L5 doi: 10.1088/0004-637X/727/1/L5
    [89]
    WANG S, JI J H. Near mean-motion resonances in the system observed by Kepler: affected by mass accretion and type I migration[J]. The Astronomical Journal, 2017, 154(6): 236 doi: 10.3847/1538-3881/aa9216
    [90]
    JIN S, DING X J, WANG S, et al. Nii: a Bayesian orbit retrieval code applied to differential astrometry[J]. Monthly Notices of the Royal Astronomical Society, 2022, 509(3): 4608-4619 doi: 10.1093/mnras/stab3317
    [91]
    暴春晖, 季江徽, 谭东杰, 等. 基于CHES卫星的模拟观测与轨道反演[J]天文学报, 2023, 已接受

    BAO Chunhui, JI Jianghui, TAN Dongjie, et al. Simulation observation and orbital retrieval based on CHES satellite[J]. Acta Astronomica Sinica, 2023, accepted
    [92]
    JI J H, TAN D J, BAO C H, et al. PyMsOfa: A python package for the Standards of Fundamental Astronomy (SOFA) service[J]. Research in Astronomy and Astrophysics, 2023, 23(12): 125015 doi: 10.1088/1674-4527/ad0499
    [93]
    BAO C H, JI J H, TAN D J, et al. Closeby Habitable Exoplanet Survey (CHES). I. Astrometric noise and planetary detection efficiency due to stellar spots and faculae[J]. The Astronomical Journal, 2024, accepted
    [94]
    TAN D J, JI J H, BAO C H, et al. Closeby Habitable Exoplanet Survey (CHES). II. An observation strategy for the target stars[J]. The Astronomical Journal, 2024, submitted
    [95]
    SUN Y H, FANG L, ZHANG H. On-orbit calibration method based on distortion gradient reconstruction distortion[J]. Semiconductor Optoelectronics, 2022, 43(4): 802-808
  • Relative Articles

    [1]GE Jian, CHEN Wen, CHEN Yonghe, SONG Zongxi, WANG Jian, ZHANG Hui, LI Yan, ZANG Weicheng, ZHOU Dan, ZHANG Yongshuai, CHEN Kun, YANG Yingquan, MAO Shude, HUANG Chelsea, YAO Xinyu, LI Xinglong, JIANG Haijiao, YU Yong, TANG Zhenghong, DONG Feng, GAO Wei, ZHANG Hongfei, SHEN Chao, WANG Fengtao, WEI Chuanxin, YANG Baoyu, LI Yudong, WEN Lin, ZHANG Pengjun, ZHANG Congcong, XIE Jiwei, MA Bo, DENG Hongping, LIU Huigen, DUAN Xuliang, WANG Haoyu, HUANG Jiangjiang, GAO Yang, WANG Yifei, WANG Lei, QIN Genjian, LIU Xinyu, GAO Jie. Search for a Second Earth – the Earth 2.0 (ET) Space Mission[J]. Chinese Journal of Space Science, 2024, 44(3): 400-424. doi: 10.11728/cjss2024.03.yg05
    [2]ZHOU Jilin, XIE Jiwei, GE Jian, JI Jianghui, DOU Jiangpei, DONG Subo, LIU Huigen, WANG Wei, GUO Jianheng, YU Cong, BAI Xuening, FENG Fabo, LIU Beibei. Progress on Exoplanet Detection and Research in Space[J]. Chinese Journal of Space Science, 2024, 44(1): 5-18. doi: 10.11728/cjss2024.01.2024-yg01
    [3]LUO Aobo, LONG Yanfei, CHEN Lihu, FANG Hanxian, YU Sunquan, Ni Jiushun. TEC Measurement Method Based on Space-based AIS Data[J]. Chinese Journal of Space Science, 2022, 42(3): 366-375. doi: 10.11728/cjss2022.03.210325037
    [11]TIAN Feng, HU Xiong, WU Ji. Research Progress and Prospect of Exoplanetary Atmospheres and Habitable Exoplanet Sciences[J]. Chinese Journal of Space Science, 2016, 36(6): 815-827. doi: 10.11728/cjss2016.06.815
    [12]Wang Lingyun, Wang Bo, Zhang Guoyu, Sun Gaofei. Study on High Precise and High Dynamic Star Simulator[J]. Chinese Journal of Space Science, 2015, 35(3): 356-361. doi: 10.11728/cjss2015.03.356
    [13]Yang Chengwei, Zheng Jianhua, Li Mingtao, Deng Xinping. Autonomous navigation based on pulsar in libration point orbit of sun-earth system[J]. Chinese Journal of Space Science, 2013, 33(1): 79-84. doi: 10.11728/cjss2013.01.079
    [14]Sun Gaofei, Zhang Guoyu, Wang Lingyun, Gao Yujun, Wang Xiangdong. Research of star map display and control system on very high accuracy star simulator[J]. Chinese Journal of Space Science, 2013, 33(3): 308-312. doi: 10.11728/cjss2013.03.308
    [15]ZHU Zhengping, NING Baiqi, WAN Weixing. Measurement and Analysis of Ionospheric Virtual Height With High Precision[J]. Chinese Journal of Space Science, 2007, 27(3): 204-210. doi: 10.11728/cjss2007.03.204
    [16]LIU Yang, WANG Zhengming, YI Dongyun. Spline Method for High-Precision Inter-Satellite Relative Positioning Based on Augmented Single-Frequency GPS[J]. Chinese Journal of Space Science, 2007, 27(2): 162-168. doi: 10.11728/cjss2007.02.162
    [17]LIU Yanzhu. Analysis of Possibility of Disturbance From Celestial Bodies on Satellite-Carried Optical Sensors[J]. Chinese Journal of Space Science, 2006, 26(3): 215-219. doi: 10.11728/cjss2006.03.215
    [18]LIN Xueyuan, HE You, SHI Pei. Location Algorithm and Error Analysis for Earth Object Using TDOA, FDOA by Dual-Satellite and Aided Height Information[J]. Chinese Journal of Space Science, 2006, 26(4): 277-281. doi: 10.11728/cjss2006.04.277
    [19]XING Jianjun, XI Xiaoning, WANG Wei, GAO Yudong. APPLICATION OF RELATIVE MEASUREMENT FOR THREE SATELLITES FORMATION[J]. Chinese Journal of Space Science, 2003, 23(4): 286-293.
    [20]GU Xiaoqin. ON THE DEPLOYMENT OF TETHERED SATELLITE SYSTEMS FROM A CIRCULAR OR ELLIPTICAL ORBIT[J]. Chinese Journal of Space Science, 2002, 22(3): 282-288.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(22)  / Tables(4)

    Article Metrics

    Article Views(10081) PDF Downloads(2300) Cited by(3)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return