Volume 44 Issue 4
Sep.  2024
Turn off MathJax
Article Contents
XU Lin, LI Lei, LIU Jianzhong, LIN Honglei, LI Yang, LIU Yang, XIE Lianghai, ZHANG Jinhai, QIAO Fuhao, HAN Juanjuan, ZOU Yongliao. Latest Scientific Results of China’s Lunar and Deep Space Exploration (2022–2024). Chinese Journal of Space Science, 2024, 44(4): 622-632 doi: 10.11728/cjss2024.04.2024-yg10
Citation: XU Lin, LI Lei, LIU Jianzhong, LIN Honglei, LI Yang, LIU Yang, XIE Lianghai, ZHANG Jinhai, QIAO Fuhao, HAN Juanjuan, ZOU Yongliao. Latest Scientific Results of China’s Lunar and Deep Space Exploration (2022–2024). Chinese Journal of Space Science, 2024, 44(4): 622-632 doi: 10.11728/cjss2024.04.2024-yg10

Latest Scientific Results of China’s Lunar and Deep Space Exploration (2022–2024)

doi: 10.11728/cjss2024.04.2024-yg10 cstr: 32142.14.cjss2024.04.2024-yg10
More Information
  • Author Bio:

    1972, Ph.D., professor-level senior engineer. She works at the General Office of the Lunar and Deep Space Exploration, Chinese Academy of Sciences/ National Space Science Center, Chinese Academy of Sciences, with research interests in meteoritics, lunar and planetary science, and strategic research in lunar and deep space exploration. E-mail: xulin@nssc.ac.cn

  • Received Date: 2024-06-20
    Available Online: 2024-08-05
  • China has successfully launched six lunar probes so far. From Chang’E-1 to Chang’E-4, they completed the circling, landing and roving exploration, of which Chang’E-4 was the first landing on the far side of the Moon in human history. Chang’ E-5 was launched in December 2020, bringing back 1731 g of lunar soil samples. Through the detailed analysis of the samples, the scientists understand the history of late lunar volcanism, specifically extending lunar volcanism by about 800 million to 1 billion years, and proposed possible mechanisms. In addition, there are many new understandings of space weathering such as meteorite impacts and solar wind radiation on the Moon. China’s first Mars exploration mission Tianwen-1 was successfully launched in July 2021. Through the study of scientific data, a number of important scientific achievements have been made in the topography, water environment and shallow surface structure of Mars. This paper introduces the main scientific achievements of Chang’E-4, Chang’E-5 and Tianwen-1 in the past two years, excluding technical and engineering contents. Due to the large number of articles involved, this paper only introduces part of the results.

     

  • loading
  • [1]
    HU T, YANG Z, KANG Z Z, et al. Population of degrading small impact craters in the Chang’E-4 landing area using descent and ground images[J]. Remote Sensing, 2022, 14(15): 3608 doi: 10.3390/rs14153608
    [2]
    DING L, ZHOU R, YUAN Y, et al. A 2-year locomotive exploration and scientific investigation of the Lunar farside by the Yutu-2 rover[J]. Science Robotics, 2022, 7(62): eabj6660 doi: 10.1126/scirobotics.abj6660
    [3]
    CHANG R, YANG W, LIN H L, et al. Lunar terrestrial analog experiment on the spectral interpretations of rocks observed by the Yutu-2 rover[J]. Remote Sensing, 2022, 14(10): 2323 doi: 10.3390/rs14102323
    [4]
    CHEN J, LING Z C, JOLLIFF B L, et al. Radiative transfer modeling of Chang’E-4 spectroscopic observations and interpretation of the south Pole-Aitken compositional anomaly[J]. The Astrophysical Journal Letters, 2022, 931(2): L24 doi: 10.3847/2041-8213/ac6e6c
    [5]
    LIU C, LIU L, CHEN J, et al. Mafic mineralogy assemblages at the Chang’E-4 landing site: a combined laboratory and Lunar in situ spectroscopic study[J]. Astronomy & Astrophysics, 2022, 658: A67
    [6]
    WANG P Y, BUGIOLACCHI R, SU Y. A new compositional, mineralogical and chronological study of the Leibnitz crater within the SPA basin[J]. Planetary and Space Science, 2023, 227: 105640 doi: 10.1016/j.pss.2023.105640
    [7]
    WANG X, LIU J J, LIU D W, et al. Dusty mafic rocks alone the path of Chang’E-4 rover: initial analysis of the image cubes of the onboard visible and near-infrared imaging spectrometer[J]. Geophysical Research Letters, 2022, 49(2): e2021GL095033 doi: 10.1029/2021GL095033
    [8]
    XIAO X, YU S R, HUANG J, et al. Thermophysical properties of the regolith on the Lunar far side revealed by the in situ temperature probing of the Chang’E-4 mission[J]. National Science Review, 2022, 9(11): nwac175 doi: 10.1093/nsr/nwac175
    [9]
    DING L, ZHOU R Y, YU T Y, et al. Lunar rock investigation and tri-aspect characterization of Lunar farside regolith by a digital twin[J]. Nature Communications, 2024, 15(1): 2098 doi: 10.1038/s41467-024-46233-8
    [10]
    CAO H Q, XU Y, XU L Y, et al. From Schrödinger to von Kármán: an intriguing new geological structure revealed by the Chang’E-4 Lunar penetrating radar[J]. Geophysical Research Letters, 2023, 50(2): e2022GL101413 doi: 10.1029/2022GL101413
    [11]
    DING C Y, LI J, HU R. Moon-based ground-penetrating radar observation of the latest volcanic activity at the Chang’E-4 landing site[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 4600410
    [12]
    FENG Y J, CHEN S R, TONG X H, et al. Exploring the Lunar regolith’s thickness and dielectric properties using band-limited impedance at Chang’E-4 landing site[J]. Journal of Geophysical Research: Planets, 2023, 128(3): e2022JE007540 doi: 10.1029/2022JE007540
    [13]
    GIANNAKIS I, MARTIN-TORRES J, SU Y, et al. Evidence of shallow basaltic lava layers in von Kármán crater from Yutu-2 Lunar penetrating radar[J]. Icarus, 2024, 408: 115837 doi: 10.1016/j.icarus.2023.115837
    [14]
    FENG J Q, SIEGLER M A, WHITE M N. Dielectric properties and stratigraphy of regolith in the Lunar south Pole-Aitken Basin: observations from the Lunar penetrating radar[J]. Astronomy & Astrophysics, 2022, 661: A47
    [15]
    ZHANG J H, ZHOU B, LIN Y T, et al. Lunar regolith and substructure at Chang’E-4 landing site in south Pole-Aitken Basin[J]. Nature Astronomy, 2021, 5(1): 25-30
    [16]
    XIE L H, LI L, ZHANG A B, et al. Multipoint observation of the solar wind interaction with strong Lunar magnetic anomalies by ARTEMIS spacecraft and Chang’E-4 rover[J]. The Astrophysical Journal Letters, 2022, 937(1): L5 doi: 10.3847/2041-8213/ac903f
    [17]
    ZHONG T H, XIE L H, ZHANG A B, et al. Dependences of energetic neutral atoms energy on the solar wind energy and solar zenith angle observed by the Chang’E-4 rover[J]. The Astrophysical Journal Letters, 2024, 960(1): L4 doi: 10.3847/2041-8213/ad1687
    [18]
    WIESER M, WILLIAMSON H, WIESER G S, et al. Energy spectra of energetic neutral hydrogen backscattered and sputtered from the Lunar regolith by the solar wind[J]. Astronomy & Astrophysics, 2024, 684: A146
    [19]
    XU Z G, GUO J N, WIMMER-SCHWEINGRUBER R F, et al. Primary and albedo protons detected by the Lunar lander neutron and dosimetry experiment on the Lunar farside[J]. Frontiers in Astronomy and Space Sciences, 2022, 9: 974946 doi: 10.3389/fspas.2022.974946
    [20]
    LUO P W, ZHANG X P, FU S, et al. First measurements of low-energy cosmic rays on the surface of the Lunar farside from Chang’E-4 mission[J]. Science Advances, 2022, 8(2): eabk1760 doi: 10.1126/sciadv.abk1760
    [21]
    YAO Y G, XIAO C J, WANG P S, et al. Instrumental neutron activation analysis of Chang’E-5 Lunar regolith samples[J]. Journal of the American Chemical Society, 2022, 144(12): 5478-5484 doi: 10.1021/jacs.1c13604
    [22]
    CHE X C, NEMCHIN A, LIU D Y, et al. Age and composition of young basalts on the Moon, measured from samples returned by Chang’E-5[J]. Science, 2021, 374(6569): 887-890 doi: 10.1126/science.abl7957
    [23]
    LI C L, HU H, YANG M F, et al. Characteristics of the Lunar samples returned by the Chang’E-5 mission[J]. National Science Review, 2022, 9(2): nwab188 doi: 10.1093/nsr/nwab188
    [24]
    LI Q L, ZHOU Q, LIU Y, et al. Two-billion-year-old volcanism on the Moon from Chang’E-5 basalts[J]. Nature, 2021, 600(7887): 54-58 doi: 10.1038/s41586-021-04100-2
    [25]
    YUE Z Y, DI K C, WAN W H, et al. Author correction: updated Lunar cratering chronology model with the radiometric age of Chang’E-5 samples[J]. Nature Astronomy, 2022, 6(4): 514 doi: 10.1038/s41550-022-01649-4
    [26]
    QIAN Y Q, SHE Z B, He Q, et al. Mineralogy and chronology of the young mare volcanism in the procellarum-KREEP-terrane[J]. Nature Astronomy, 2023, 7(3): 287-297 doi: 10.1038/s41550-022-01862-1
    [27]
    ZHANG H, ZHANG X, ZHANG G, et al. Size, morphology, and composition of Lunar samples returned by Chang’E-5 mission[J]. Science China Physics, Mechanics & Astronomy, 2022, 65 (2): 229511
    [28]
    LU X J, CHEN J, LING Z C, et al. Mature Lunar soils from Fe-rich and young mare basalts in the Chang’E-5 regolith samples[J]. Nature Astronomy, 2023, 7(2): 142-151
    [29]
    TIAN H C, WANG H, CHEN Y, et al. Non-KREEP origin for Chang’E-5 basalts in the procellarum KREEP terrane[J]. Nature, 2021, 600(7887): 59-63 doi: 10.1038/s41586-021-04119-5
    [30]
    LUO B J, WANG Z C, SONG J L, et al. The magmatic architecture and evolution of the Chang’e-5 Lunar basalts[J]. Nature Geoscience, 2023, 16(4): 301-308 doi: 10.1038/s41561-023-01146-x
    [31]
    LIU D W, WANG X, LIU J J, et al. Spectral interpretation of late-stage mare basalt mineralogy unveiled by Chang’E-5 samples[J]. Nature Communications, 2022, 13(1): 5965 doi: 10.1038/s41467-022-33670-6
    [32]
    YANG C, ZHANG X M, BRUZZONE L, et al. Comprehensive mapping of Lunar surface chemistry by adding Chang’E-5 samples with deep learning[J]. Nature Communications, 2023, 14(1): 7554 doi: 10.1038/s41467-023-43358-0
    [33]
    ZHAO R, SHEN L Q, XIAO D D, et al. Diverse glasses revealed from Chang’E-5 Lunar regolith[J]. National Science Review, 2023, 10(12): nwad079 doi: 10.1093/nsr/nwad079
    [34]
    LONG T, QIAN Y Q, NORMAN M D, et al. Constraining the formation and transport of Lunar impact glasses using the ages and chemical compositions of Chang’E-5 glass beads[J]. Science Advances, 2022, 8(39): eabq2542 doi: 10.1126/sciadv.abq2542
    [35]
    MEI A X, JIANG Y, LIAO S Y, et al. KREEP-rich breccia in Chang’E-5 regolith and its implications[J]. Science China Earth Sciences, 2023, 66(11): 2473-2486 doi: 10.1007/s11430-022-1134-0
    [36]
    GUO Z, LI C, LI Y, et al. Nanophase iron particles derived from fayalitic olivine decomposition in Chang’E-5 Lunar soil: implications for thermal effects during impacts[J]. Geophysical Research Letters, 2022, 49(5): e2021GL097323 doi: 10.1029/2021GL097323
    [37]
    LI C, GUO Z, LI Y, et al. Impact-driven disproportionation origin of nanophase iron particles in Chang’E-5 Lunar soil sample[J]. Nature Astronomy, 2022, 6(10): 1156-1162 doi: 10.1038/s41550-022-01763-3
    [38]
    XIAN H Y, ZHU J X, YANG Y P, et al. Ubiquitous and progressively increasing ferric iron content on the Lunar surfaces revealed by the Chang’E-5 sample[J]. Nature Astronomy, 2023, 7(3): 280-286 doi: 10.1038/s41550-022-01855-0
    [39]
    LIU X Y, GU L X, TIAN H C, et al. First classification of iron meteorite fragment preserved in Chang’E-5 Lunar soils[J]. Science Bulletin, 2024, 69(4): 554-561 doi: 10.1016/j.scib.2023.12.032
    [40]
    ZENG X J, WU Y X, YU W, et al. Unusual Ti minerals on the Moon produced by space weathering[J]. Nature Astronomy, 2024, 8(6): 732-738 doi: 10.1038/s41550-024-02229-4
    [41]
    LI Y H, WANG Z C, ZHANG W, et al. Rb-Sr isotopes record complex thermal modification of Chang’E-5 Lunar soils[J]. Science Bulletin, 2023, 68(22): 2724-2728 doi: 10.1016/j.scib.2023.09.045
    [42]
    GUO Z, LI C, LI Y, et al. Sub-microscopic magnetite and metallic iron particles formed by eutectic reaction in Chang’E-5 Lunar soil[J]. Nature Communications, 2022, 13(1): 7177 doi: 10.1038/s41467-022-35009-7
    [43]
    GUO Z, LI C, LI Y, et al. Vapor-deposited digenite in Chang’E-5 Lunar soil[J]. Science Bulletin, 2023, 68(7): 723-729 doi: 10.1016/j.scib.2023.03.020
    [44]
    LIN H L, LI S, XU R, et al. In situ detection of water on the Moon by the Chang’E-5 lander[J]. Science Advances, 2022, 8(1): eabl9174 doi: 10.1126/sciadv.abl9174
    [45]
    LIU J J, LIU B, REN X, et al. Evidence of water on the Lunar surface from Chang’E-5 in-situ spectra and returned samples[J]. Nature Communications, 2022, 13(1): 3119 doi: 10.1038/s41467-022-30807-5
    [46]
    ZHOU C J, TANG H, LI X Y, et al. Chang’E-5 samples reveal high water content in lunar minerals[J]. Nature Communications, 2022, 13(1): 5336 doi: 10.1038/s41467-022-33095-1
    [47]
    ZHOU C J, MO B, TANG H, et al. Multiple sources of water preserved in impact glasses from Chang’E-5 Lunar soil[J]. Science Advances, 2024, 10(19): eadl2413 doi: 10.1126/sciadv.adl2413
    [48]
    HE H C, JI J L, ZHANG Y, et al. A solar wind-derived water reservoir on the Moon hosted by impact glass beads[J]. Nature Geoscience, 2023, 16(4): 294-300 doi: 10.1038/s41561-023-01159-6
    [49]
    ZENG X J, LI X Y, LIU J Z. Exotic clasts in Chang’e-5 regolith indicative of unexplored terrane on the Moon[J]. Nature Astronomy, 2023, 7(2): 152-159
    [50]
    TIAN H C, ZHANG C, YANG W, et al. Surges in volcanic activity on the Moon about two billion years ago[J]. Nature Communications, 2023, 14(1): 3734 doi: 10.1038/s41467-023-39418-0
    [51]
    HU S, HE H C, JI J L, et al. A dry Lunar mantle reservoir for young mare basalts of Chang’E-5[J]. Nature, 2021, 600(7887): 49-53 doi: 10.1038/s41586-021-04107-9
    [52]
    SU B, YUAN J Y, CHEN Y, et al. Fusible mantle cumulates trigger young mare volcanism on the cooling Moon[J]. Science Advances, 2022, 8(42): eabn2103 doi: 10.1126/sciadv.abn2103
    [53]
    WANG Z L, TIAN W, WANG W, et al. Crystallization kinetics of a fastest-cooling young mare basalt of Chang’E-5[J]. Science Bulletin, 2023, 68(15): 1621-1624 doi: 10.1016/j.scib.2023.06.036
    [54]
    XU J Y, LI Q L, LU K, et al. Chang’E-5 basalt-like non-KREEP young Lunar meteorite[J]. Science Bulletin, 2024, 69(5): 601-605 doi: 10.1016/j.scib.2023.12.030
    [55]
    LU Y, EDGETT K S, WU B, et al. Aeolian disruption and reworking of TARs at the Zhurong rover field site, southern Utopia Planitia, Mars[J]. Earth and Planetary Science Letters, 2022, 595: 117785 doi: 10.1016/j.jpgl.2022.117785
    [56]
    LIU J J, QIN X G, REN X, et al. Martian dunes indicative of wind regime shift in line with end of ice age[J]. Nature, 2023, 620(7973): 303-309 doi: 10.1038/s41586-023-06206-1
    [57]
    GOU S, YUE Z Y, DI K C, et al. Transverse aeolian ridges in the landing area of the Tianwen-1 Zhurong rover on Utopia Planitia, Mars[J]. Earth and Planetary Science Letters, 2022, 595: 117764 doi: 10.1016/j.jpgl.2022.117764
    [58]
    WANG L, ZHAO J N, HUANG J, et al. An explosive mud volcano origin for the pitted cones in southern Utopia Planitia, Mars[J]. Science China Earth Sciences, 2023, 66(9): 2045-2056 doi: 10.1007/s11430-022-1119-1
    [59]
    CHEN Z Y, WU B, WANG Y R, et al. Rock abundance and erosion rate at the Zhurong landing site in southern utopia planitia on Mars[J]. Earth and Space Science, 2022, 9(8): e2022EA002252 doi: 10.1029/2022EA002252
    [60]
    WANG B, GOU S, DI K C, et al. Rock size-frequency distribution analysis at the Zhurong landing site based on navigation and terrain camera images along the entire traverse[J]. Icarus, 2024, 413: 116001 doi: 10.1016/j.icarus.2024.116001
    [61]
    ZHANG Q, LIU D W, REN X, et al. Dust deposition at zhurong landing site from multispectral camera observations[J]. Geophysical Research Letters, 2023, 50(13): e2023GL104676 doi: 10.1029/2023GL104676
    [62]
    JIANG C S, JIANG Y, LI H N, et al. Initial results of the meteorological data from the first 325 sols of the Tianwen-1 mission[J]. Scientific Reports, 2023, 13(1): 3325 doi: 10.1038/s41598-023-30513-2
    [63]
    LUO Y W, YAN J G, LI F, et al. Spatial autocorrelation of Martian surface temperature and its spatio-temporal relationships with near-surface environmental factors across China’s Tianwen-1 landing zone[J]. Remote Sensing, 2021, 13(11): 2206 doi: 10.3390/rs13112206
    [64]
    ZHANG L, ZHANG J H. Observation-based temperature field simulation at Zhurong landing site, Mars[J]. Frontiers in Astronomy and Space Sciences, 2022, 9: 1059242 doi: 10.3389/fspas.2022.1059242
    [65]
    ZHANG L, XU Y, LIU R R, et al. The dielectric properties of Martian regolith at the Tianwen-1 landing site[J]. Geophysical Research Letters, 2023, 50(13): e2022GL102207 doi: 10.1029/2022GL102207
    [66]
    LI C, ZHENG Y K, WANG X, et al. Layered subsurface in utopia basin of Mars revealed by Zhurong rover radar[J]. Nature, 2022, 610(7931): 308-312 doi: 10.1038/s41586-022-05147-5
    [67]
    ZHAO Y Y S, YU J, WEI G F, et al. In situ analysis of surface composition and meteorology at the Zhurong landing site on Mars[J]. National Science Review, 2023, 10 (6): nwad056
    [68]
    QIN X G, REN X, WANG X, et al. Modern water at low lati-tudes on Mars: potential evidence from dune surfaces[J]. Science Advances, 2023, 9(17): eadd8868 doi: 10.1126/sciadv.add8868
    [69]
    LIU C Q, LING Z C, WU Z C, et al. Aqueous alteration of the vastitas borealis formation at the Tianwen-1 landing site[J]. Communications Earth & Environment, 2022, 3: 280
    [70]
    LIN H L, LIN Y T, WEI Y, et al. Mineralogical evidence of water activity in the northern low lands of Mars based on inflight-calibrated spectra from the Zhurong rover[J]. Science China Earth Sciences, 2023, 66(11): 2463-2472 doi: 10.1007/s11430-023-1194-4
    [71]
    LIU Y, WU X, ZHAO Y Y S, et al. Zhurong reveals recent aqueous activities in Utopia Planitia, Mars[J]. Science Advances, 2022, 8(19): eabn8555 doi: 10.1126/sciadv.abn8555
    [72]
    WANG J, ZHAO J N, XIAO L, et al. Recent aqueous activity on Mars evidenced by transverse aeolian ridges in the Zhurong exploration region of utopia planitia[J]. Geophysical Research Letters, 2023, 50(6): e2022GL101650 doi: 10.1029/2022GL101650
    [73]
    ZHANG L, LI C, ZHANG J H, et al. Buried palaeo-polygonal terrain detected underneath Utopia Planitia on Mars by the Zhurong radar[J]. Nature Astronomy, 2024, 8(1): 69-76
    [74]
    CHEN R N, ZHANG L, XU Y, et al. Martian soil as revealed by ground-penetrating radar at the Tianwen-1 landing site[J]. Geology, 2023, 51(3): 315-319 doi: 10.1130/G50632.1
    [75]
    DU A M, GE Y S, WANG H P, et al. Ground magnetic survey on Mars from the Zhurong rover[J]. Nature Astronomy, 2023, 7(9): 1037-1047 doi: 10.1038/s41550-023-02008-7
    [76]
    GUO X, YAN J G, YANG X, et al. Simulation of phobos gra-vity field estimation from Tianwen-1 flybys and implications for the modelling of phobos’ internal structure[J]. Monthly Notices of the Royal Astronomical Society, 2023, 520(1): 925-934 doi: 10.1093/mnras/stad179
    [77]
    ZHANG A B, KONG L G, LI W Y, et al. Tianwen-1 MINPA observations in the solar wind[J]. Earth and Planetary Physics, 2022, 6(1): 1-9 doi: 10.26464/epp2022014
    [78]
    FAN K, YAN L M, WEI Y, et al. The solar wind plasma upstream of Mars observed by Tianwen-1: comparison with Mars express and MAVEN[J]. Science China Earth Sciences, 2022, 65(4): 759-768 doi: 10.1007/s11430-021-9917-0
    [79]
    WANG Z C, MA M L, LIU Q H, et al. Application of the Tianwen-1 DOR signals observed by very long baseline interferometry radio telescopes in the study of solar wind plasma and a coronal mass ejection[J]. The Astrophysical Journal Supplement Series, 2023, 269(2): 57 doi: 10.3847/1538-4365/ad077f
    [80]
    CHI Y T, SHEN C L, CHENG L, et al. Interplanetary coronal mass ejections and stream interaction regions observed by Tianwen-1 and MAVEN at Mars[J]. The Astrophysical Journal Supplement Series, 2023, 267(1): 3 doi: 10.3847/1538-4365/acd191
    [81]
    FU S, DING Z Y, ZHANG Y J, et al. First report of a solar energetic particle event observed by China’s Tianwen-1 mission in transit to Mars[J]. The Astrophysical Journal Letters, 2022, 934(1): L15 doi: 10.3847/2041-8213/ac80f5
    [82]
    WANG J J, SHI Y R, LUO B X, et al. Upstream solar wind prediction up to Mars by an operational solar wind prediction system[J]. Space Weather, 2023, 21(1): e2022SW003281 doi: 10.1029/2022SW003281
    [83]
    ZHONG Z H, SHEN C L, CHI Y T, et al. Prediction for arrival time and parameters of corotation interaction regions using Earth-Mars correlated events from Tianwen-1, MAVEN, and wind observations[J]. The Astrophysical Journal, 2024, 965(2): 114 doi: 10.3847/1538-4357/ad2fab
    [84]
    CHENG L, LILLIS R, WANG Y M, et al. Martian bow shock oscillations driven by solar wind variations: simultaneous observations from Tianwen-1 and MAVEN[J]. Geophysical Research Letters, 2023, 50(16): e2023GL104769 doi: 10.1029/2023GL104769
    [85]
    ZHANG Y T, LI L, XIE L H, et al. Inversion of upstream solar wind parameters from ENA observations at Mars[J]. Remote Sensing, 2023, 15(7): 1721 doi: 10.3390/rs15071721
    [86]
    SU Z P, WANG Y M, ZHANG T L, et al. Unusual Martian foreshock waves triggered by a solar wind stream interaction region[J]. The Astrophysical Journal Letters, 2023, 947(2): L33 doi: 10.3847/2041-8213/accb9f
    [87]
    JIN T F, NI B B, KONG L G, et al. Proton pitch angle distributions in the Martian induced magnetosphere: a survey of Tianwen-1 Mars ion and neutral particle analyzer observations[J]. Earth and Planetary Physics, 2023, 7(5): 533-539 doi: 10.26464/epp2023072
    [88]
    CHI Y T, SHEN C L, LIU J Y, et al. The dynamic evolution of multipoint interplanetary coronal mass ejections observed with BepiColombo, Tianwen-1, and MAVEN[J]. The Astrophysical Journal Letters, 2023, 951(1): L14 doi: 10.3847/2041-8213/acd7e7
    [89]
    YU B K, CHI Y T, OWENS M, et al. Tianwen-1 and MAVEN observations of the response of Mars to an interplanetary coronal mass ejection[J]. The Astrophysical Journal, 2023, 953(1): 105 doi: 10.3847/1538-4357/acdcf8
    [90]
    MA X, TIAN A M, GUO R L, et al. Tianwen-1 and MAVEN observations of Martian oxygen ion plumes[J]. Icarus, 2023, 406: 115758 doi: 10.1016/j.icarus.2023.115758
    [91]
    QIAO F H, LI L, XIE L H, et al. Acceleration of pick-up ions in the Martian magnetosheath: a Tianwen-1 case study[J]. Journal of Geophysical Research: Space Physics, 2024, 129(5): e2024JA032461 doi: 10.1029/2024JA032461
    [92]
    HU X, WU X C, SONG S L, et al. First observations of Mars atmosphere and ionosphere with Tianwen-1 radio-occultation technique on 5 August 2021[J]. Remote Sensing, 2022, 14(11): 2718 doi: 10.3390/rs14112718
    [93]
    LIU M, CHEN L, JIAN N C, et al. Preliminary estimations of Mars atmospheric and ionospheric profiles from Tianwen-1 radio occultation one-way, two-way, and three-way observations[J]. Remote Sensing, 2023, 15(23): 5506 doi: 10.3390/rs15235506
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(958) PDF Downloads(156) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return