Citation: | CHANG Jin. Recent Progresses of the DAMPE Mission. Chinese Journal of Space Science, 2024, 44(4): 633-642 doi: 10.11728/cjss2024.04.2024-yg11 |
[1] |
ADE P A R, AGHANIM N, ARNAUD M, et al. Planck 2015 results. XIII. Cosmological parameters[J]. Astronomy & Astrophysics, 2016, 594 : A13
|
[2] |
JUNGMAN G, KAMIONKOWSKI M, GRIEST K. Supersymmetric dark matter[J]. Physics Reports, 1996, 267(5/6): 195-373
|
[3] |
BERTONE G, HOOPER D, SILK J. Particle dark matter: evidence, candidates and constraints[J]. Physics Reports, 2005, 405(5/6): 279-390
|
[4] |
BI X J, YIN P F, YUAN Q. Status of dark matter detection[J]. Frontiers of Physics, 2013, 8(6): 794-827 doi: 10.1007/s11467-013-0330-z
|
[5] |
ZHAO L, LIU J L. Experimental search for dark matter in China[J]. Frontiers of Physics, 2020, 15(4): 44301 doi: 10.1007/s11467-020-0960-x
|
[6] |
ADRIANI O, BARBARINO G C, BAZILEVSKAYA G A, et al. An anomalous positron abundance in cosmic rays with energies 1.5-100 GeV[J]. Nature, 2009, 458(7238): 607-609 doi: 10.1038/nature07942
|
[7] |
ACKERMANN M, AJELLO M, ALLAFORT A, et al. Measurement of separate cosmic-ray electron and positron spectra with the Fermi Large Area Telescope[J]. Physical Review Letters, 2012, 108(1): 011103 doi: 10.1103/PhysRevLett.108.011103
|
[8] |
AGUILAR M, ALBERTI G, ALPAT B, et al. First result from the Alpha Magnetic Spectrometer on the International Space Station: precision measurement of the positron fraction in primary cosmic rays of 0.5-350 GeV[J]. Physical Review Letters, 2013, 110(14): 141102 doi: 10.1103/PhysRevLett.110.141102
|
[9] |
CHANG J, ADAMS J H, AHN H S, et al. An excess of cosmic ray electrons at energies of 300-800 GeV[J]. Nature, 2008, 456(7220): 362-365 doi: 10.1038/nature07477
|
[10] |
ABDO A A, ACKERMANN M, AJELLO M, et al. Measurement of the cosmic ray e++e- spectrum from 20 GeV to 1 TeV with the Fermi Large Area telescope[J]. Physical Review Letters, 2009, 102(18): 181101 doi: 10.1103/PhysRevLett.102.181101
|
[11] |
AGUILAR M, AISA D, ALPAT B, et al. Precision measurements of the (e++e-) flux of the primary cosmic rays from 0.5 GeV to 1 TeV with the Alpha magnetic spectrometer on the international space station[J]. Physical Review Letters, 2014, 113 (22/23/24/25/26/27/28): 221102
|
[12] |
SHEN C S. Pulsars and very high-energy cosmic-ray electrons[J]. The Astrophysical Journal, 1970, 162: L181 doi: 10.1086/180650
|
[13] |
HOOPER D, BLASI P, SERPICO P D. Pulsars as the sources of high energy cosmic ray positrons[J]. Journal of Cosmology and Astroparticle Physics, 2009, 1: 25
|
[14] |
YÜKSEL H, KISTLER M D, STANEV T. TeV gamma rays from Geminga and the origin of the GeV positron excess[J]. Physical Review Letters, 2009, 103(5): 051101 doi: 10.1103/PhysRevLett.103.051101
|
[15] |
BERGSTRÖM L, BRINGMANN T, EDSJÖ J. New positron spectral features from supersymmetric dark matter: a way to explain the PAMELA data?[J]. Physical Review D, 2008, 78(10): 103520 doi: 10.1103/PhysRevD.78.103520
|
[16] |
CIRELLI M, KADASTIK M, RAIDAL M, et al. Model-independent implications of the e±, $ \bar{p} $ cosmic ray spectra on properties of dark matter[J]. Nuclear Physics B, 2009, 813(1/2): 1-21
|
[17] |
YIN P F, YUAN Q, LIU J, et al. PAMELA data and leptonically decaying dark matter[J]. Physical Review D, 2009, 79(2): 023512 doi: 10.1103/PhysRevD.79.023512
|
[18] |
ABEYSEKARA A U, ALBERT A, ALFARO R, et al. Extended gamma-ray sources around pulsars constrain the origin of the positron flux at Earth[J]. Science, 2017, 358(6365): 911-914 doi: 10.1126/science.aan4880
|
[19] |
HOOPER D, GOODENOUGH L. Dark matter annihilation in the Galactic center as seen by the Fermi gamma ray space telescope[J]. Physics Letters B, 2011, 697(5): 412-428 doi: 10.1016/j.physletb.2011.02.029
|
[20] |
CUI M Y, YUAN Q, TSAI Y L S, et al. Possible dark matter annihilation signal in the AMS-02 antiproton data[J]. Physical Review Letters, 2017, 118(19): 191101 doi: 10.1103/PhysRevLett.118.191101
|
[21] |
CUOCO A, KRÄMER M, KORSMEIER M. Novel dark matter constraints from antiprotons in light of AMS-02[J]. Physical Review Letters, 2017, 118(19): 191102 doi: 10.1103/PhysRevLett.118.191102
|
[22] |
CHANG J. Dark matter particle explorer: the first Chinese cosmic ray and hard γ-ray detector in Space[J]. Chinese Journal of Space Science, 2014, 34(5): 550-557 doi: 10.11728/cjss2014.05.550
|
[23] |
CHANG J, AMBROSI G, AN Q, et al. The dark matter particle explorer mission[J]. Astroparticle Physics, 2017, 95: 6-24 doi: 10.1016/j.astropartphys.2017.08.005
|
[24] |
YU Y H, SUN Z Y, SU H, et al. The plastic scintillator detector for DAMPE[J]. Astroparticle Physics, 2017, 94: 1-10 doi: 10.1016/j.astropartphys.2017.06.004
|
[25] |
AZZZARELLO P, AMBROSI G, ASFANDIYAROV R, et al. The DAMPE silicon-tungsten tracker[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2016, 831: 378-384
|
[26] |
ZHANG Z Y, ZHANG Y L, DONG J N, et al. Design of a high dynamic range photomultiplier base board for the BGO ECAL of DAMPE[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2015, 780: 21-26
|
[27] |
HE M, MA T, CHANG J, et al. GEANT4 simulation of neutron detector for DAMPE[J]. Acta Astronomica Sinica, 2016, 57(1): 1-8
|
[28] |
AMBROSI G, AN Q, ASFANDIYAROV R, et al. The on-orbit calibration of DArk matter particle explorer[J]. Astroparticle Physics, 2019, 106: 18-34 doi: 10.1016/j.astropartphys.2018.10.006
|
[29] |
DONG T K, ZHANG Y P, MA P X, et al. Charge measurement of cosmic ray nuclei with the plastic scintillator detector of DAMPE[J]. Astroparticle Physics, 2019, 105: 31-36 doi: 10.1016/j.astropartphys.2018.10.001
|
[30] |
YUE C, ZANG J J, DONG T K, et al. A parameterized energy correction method for electromagnetic showers in BGO-ECAL of DAMPE[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2017, 856: 11-16
|
[31] |
DAMPE Collaboration. Direct detection of a break in the teraelectronvolt cosmic-ray spectrum of electrons and positrons[J]. Nature, 2017, 552(7683): 63-66 doi: 10.1038/nature24475
|
[32] |
CHANG J. On the detection and identification of cosmic gamma-rays in a cosmic ray detector[C]//26th International Cosmic Ray Conference. Salt Lake City: ICRC, 1999: 37
|
[33] |
CHANG J, ADAMS J H, AHN H S, et al. Resolving electrons from protons in ATIC[J]. Advances in Space Research, 2008, 42(3): 431-436 doi: 10.1016/j.asr.2007.06.012
|
[34] |
HUANG Y Y, MA T, YUE C, et al. Calibration and performance of the neutron detector onboard of the DAMPE mission[J]. Research in Astronomy and Astrophysics, 2020, 20(9): 153 doi: 10.1088/1674-4527/20/9/153
|
[35] |
DAMPE Collaboration. Detection of spectral hardenings in cosmic-ray boron-to-carbon and boron-to-oxygen flux ratios with DAMPE[J]. Science Bulletin, 2022, 67(21): 2162-2166 doi: 10.1016/j.scib.2022.10.002
|
[36] |
HERD Collaboration. The high energy cosmic-radiation detection (HERD) facility onboard China’s Space Station[J]. Proc. SPIE, 2014, 9144: 91440X
|
[37] |
ENGELMANN J J, FERRANDO P, SOUTOUL A, et al. Charge composition and energy spectra of cosmic-ray for elements from Be to Ni - Results from HEAO-3-C2[J]. Astronomy & Astrophy- sics, 1990, 233: 96-111
|
[38] |
SWORDY S P, MUELLER D, MEYER P, et al. Relative abundances of secondary and primary cosmic rays at high energies[J]. The Astrophysical Journal, 1990, 349: 625 doi: 10.1086/168349
|
[39] |
PANOV A D, SOKOLSKAYA N V, ADAMS J H, et al. Relative abundances of cosmic ray nuclei B-C-N-O in the energy region from 10 GeV/n to 300 GeV/n. Results from ATIC-2 (the science flight of ATIC)[C]//30th International Cosmic Ray Conference. Merida: ICRC, 2007: 3
|
[40] |
AHN H S, ALLISON P S, BAGLIESI M G, et al. Measurements of cosmic-ray secondary nuclei at high energies with the first flight of the CREAM balloon-borne experiment[J]. Astroparticle Physics, 2008, 30(3): 133-141 doi: 10.1016/j.astropartphys.2008.07.010
|
[41] |
OBERMEIER A, AVE M, BOYLE P, et al. Energy spectra of primary and secondary cosmic-ray nuclei measured with TRACER[J]. The Astrophysical Journal, 2011, 742(1): 14 doi: 10.1088/0004-637X/742/1/14
|
[42] |
ADRIANI O, BARBARINO G C, BAZILEVSKAYA G A, et al. Measurement of boron and carbon fluxes in cosmic rays with the PAMELA experiment[J]. The Astrophysical Journal, 2014, 791(2): 93 doi: 10.1088/0004-637X/791/2/93
|
[43] |
GREBENYUK V, KARMANOV D, KOVALEV I, et al. Secondary cosmic rays in the NUCLEON space experiment[J]. Advances in Space Research, 2019, 64(12): 2559-2563 doi: 10.1016/j.asr.2019.06.030
|
[44] |
AGUILAR M, ALI CAVASONZA L A, AMBROSI G, et al. The Alpha Magnetic Spectrometer (AMS) on the International Space Station: Part II — results from the first seven years[J]. Phy sics Reports, 2021, 894: 1-116 doi: 10.1016/j.physrep.2020.09.003
|
[45] |
DAMPE Collaboration. Measurement of the cosmic p+He energy spectrum from 46 GeV to 316 TeV with the DAMPE space mission[OL]. arXiv preprint arXiv: 2304.00137, 2023
|
[46] |
COLLABORATION D, ASFANDIYAROV R, AZZARELLO P, et al. (DAMPE Collaboration). Measurement of the cosmic ray proton spectrum from 40 GeV to 100 TeV with the DAMPE satellite[J]. Science Advances, 2019, 5(9): eaax3793 doi: 10.1126/sciadv.aax3793
|
[47] |
ALEMANNO F, AN Q, AZZARELLO P, et al. Measurement of the cosmic ray helium energy spectrum from 70 GeV to 80 TeV with the DAMPE space mission[J]. Physical Review Letters, 2021, 126(20): 201102 doi: 10.1103/PhysRevLett.126.201102
|
[48] |
AHN H S, SEO E S, ADAMS J H, et al. The energy spectra of protons and helium measured with the ATIC experiment[J]. Advances in Space Research, 2006, 37(10): 1950-1954 doi: 10.1016/j.asr.2005.09.031
|
[49] |
ATKIN E, BULATOV V, DOROKHOV V, et al. First results of the cosmic ray NUCLEON experiment[J]. Journal of Cosmology and Astroparticle Physics, 2017, 2017: 20
|
[50] |
AHN H S, ALLISON P, BAGLIESI M G, et al. Discrepant hardening observed in cosmic-ray elemental spectra[J]. The Astrophysical Journal Letters, 2010, 714(1): L89-L93 doi: 10.1088/2041-8205/714/1/L89
|
[51] |
BARTOLI B, BERNARDINI P, BI X J, et al. Knee of the cosmic hydrogen and helium spectrum below 1 PeV measured by ARGO-YBJ and a Cherenkov telescope of LHAASO[J]. Physical Review D, 2015, 92(9): 092005 doi: 10.1103/PhysRevD.92.092005
|
[52] |
ALBERT A, ALFARO R, ALVAREZ C, et al. Cosmic ray spectrum of protons plus helium nuclei between 6 and 158 TeV from HAWC data[J]. Physical Review D, 2022, 105(6): 063021 doi: 10.1103/PhysRevD.105.063021
|
[53] |
ANTONI T, APEL W D, BADEA A F, et al. KASCADE measurements of energy spectra for elemental groups of cosmic rays: results and open problems[J]. Astroparticle Physics, 2005, 24(1/2): 1-25
|
[54] |
EAS-TOP Collaboration. The cosmic ray proton, helium and CNO fluxes in the 100 TeV energy region from TeV muons and EAS atmospheric Cherenkov light observations of MACRO and EAS-TOP[J]. Astroparticle Physics, 2004, 21(3): 223-240 doi: 10.1016/j.astropartphys.2004.01.005
|
[55] |
ALEMANNO F, ALTOMARE C, AN Q, et al. Search for relativistic fractionally charged particles in space[J]. Physical Review D, 2022, 106(6): 063026 doi: 10.1103/PhysRevD.106.063026
|
[56] |
SBARRA C, CASADEI D, BROCCO L, et al. Search for fractional charges in cosmic rays with Ams[OL]. arXiv preprint arXiv: astro-ph/0304192, 2003
|
[57] |
FUKE H, TASAKI Y, ABE K, et al. Search for fractionally charged particles in cosmic rays with the BESS spectrometer[J]. Advances in Space Research, 2008, 41(12): 2050-2055 doi: 10.1016/j.asr.2007.02.042
|
[58] |
MORI M, OYAMA Y, SUZUKI A, et al. Search for fractionally charged particles in Kamiokande II[J]. Physical Review D, 1991, 43(9): 2843-2846 doi: 10.1103/PhysRevD.43.2843
|
[59] |
AGLIETTA M, ANTONIOLI P, BADINO G, et al. Search for fractionally charged particles in the Mont Blanc LSD scintillation detector[J]. Astroparticle Physics, 1994, 2(1): 29-34 doi: 10.1016/0927-6505(94)90015-9
|
[60] |
AMBROSIO M, ANTOLINI R, AURIEMMA G, et al. Search for lightly ionizing particles with the MACRO detector[J]. Physical Review D, 2000, 62(5): 052003 doi: 10.1103/PhysRevD.62.052003
|
[61] |
AGNESE R, ANDERSON A , BALAKISHIYEVA D, et al. First direct limits on lightly ionizing particles with electric charge less than e/6[J]. Physical Review Letters, 2015, 114 (11): 111302
|
[62] |
ALVIS S I, ARNQUIST I , AVIGNONE F, et al. First limit on the direct detection of lightly ionizing particles for electric charge as low as e/1000 with the majorana demonstrator[J]. Physical Review Letters, 2018, 120 (21): 211804
|
[63] |
DAMPE Collaboration. Search for gamma-ray spectral lines with the DArk Matter Particle Explorer[J]. Science Bulletin, 2022, 67(7): 679-684 doi: 10.1016/j.scib.2021.12.015
|
[64] |
ACKERMANN M, AJELLO M, ALBERT A, et al. Updated search for spectral lines from Galactic dark matter interactions with pass 8 data from the Fermi Large Area Telescope[J]. Phy- sical Review D, 2015, 91(12): 122002 doi: 10.1103/PhysRevD.91.122002
|
[65] |
DAMPE Collaboration. Point-like source catalog observed by DAMPE[C]//38th International Cosmic Ray Conference. Nagoya: ICRC, 2023
|
[66] |
LI T P, MA Y Q. Analysis methods for results in gamma-ray astronomy[J]. The Astrophysical Journal, 1983, 272: 317-324 doi: 10.1086/161295
|
[67] |
ABDOLLAHI S, ACERO F, BALDINI L, et al. Incremental fermi large area telescope fourth source catalog[J]. The Astrophysical Journal Supplement Series, 2022, 260(2): 53 doi: 10.3847/1538-4365/ac6751
|
[68] |
Shen Z Q. Analysis of the galactic center excess with DAMPE[C]//38th International Cosmic Ray Conference. Nagoya: ICRC, 2023
|
[69] |
DAYLAN T, FINKBEINER D P, HOOPER D, et al. The characterization of the gamma-ray signal from the central Milky Way: a case for annihilating dark matter[J]. Physics of the Dark Universe, 2016, 12: 1-23 doi: 10.1016/j.dark.2015.12.005
|
[70] |
CALORE F, CHOLIS I, WENIGER C. Background model systematics for the Fermi GeV excess[J]. Journal of Cosmology and Astroparticle Physics, 2015, 2015: 038
|
[71] |
CHOLIS I, ZHONG Y M, MCDERMOTT S D, et al. Return of the templates: revisiting the Galactic Center excess with multi-messenger observations[J]. Physical Review D, 2022, 105(10): 103023 doi: 10.1103/PhysRevD.105.103023
|