| Citation: | WANG Sulong, DU Wangfang, HE Falong, ZHAO Yanlin, YAO Jun, ZHAO Jianfu. Numerical Simulation of Interfacial Oscillation Inside a Micro-pin-finned Structure (in Chinese). Chinese Journal of Space Science, 2024, 44(5): 863-872 doi: 10.11728/cjss2024.05.2024-0030 |
| [1] |
AKYILDIZ H. A numerical study of the effects of the vertical baffle on liquid sloshing in two-dimensional rectangular tank[J]. Journal of Sound and Vibration, 2012, 331(1): 41-52 doi: 10.1016/j.jsv.2011.08.002
|
| [2] |
IBRAHIM R A, HEINRICH R T. Experimental investigation of liquid sloshing under parametric random excitation[J]. Journal of Applied Mechanics, 1988, 55(2): 467-473 doi: 10.1115/1.3173701
|
| [3] |
CUI D L, YAN S Z, GUO X S, et al. Parametric resonance of liquid sloshing in partially filled spacecraft tanks during the powered-flight phase of rocket[J]. Aerospace Science and Technology, 2014, 35: 93-105 doi: 10.1016/j.ast.2014.03.006
|
| [4] |
DALMON A, LEPILLIEZ M, TANGUY S, et al. Comparison between the FLUIDICS experiment and direct numerical simulations of fluid sloshing in spherical tanks under microgravity conditions[J]. Microgravity Science and Technology, 2019, 31(1): 123-138 doi: 10.1007/s12217-019-9675-4
|
| [5] |
YANG W J, ZHANG T T, LI C, et al. Numerical simulation of pitching sloshing under microgravity[J]. Journal of Applied Fluid Mechanics, 2019, 12(5): 1527-1537 doi: 10.29252/jafm.12.05.29677
|
| [6] |
ARNDT T, DREYER M. Damping behavior of sloshing liquid in laterally excited cylindrical propellant vessels[J]. Journal of Spacecraft and Rockets, 2008, 45(5): 1085-1088 doi: 10.2514/1.35019
|
| [7] |
LI J C, LIN H, ZHAO J F, et al. Dynamic behaviors of liquid in partially filled tank in short-term microgravity[J]. Microgravity Science and Technology, 2018, 30(6): 849-856 doi: 10.1007/s12217-018-9642-5
|
| [8] |
魏列, 杜王芳, 薛子扬, 等. 重力跳变引起的贮箱内气液界面波传播规律[J]. 空间科学学报, 2023, 43(5): 875-882 doi: 10.11728/cjss2023.05.2023-yg12
WEI Lie, DU Wangfang, XUE Ziyang, et al. Wave propagation law at the gas-liquid interface in a storage tank due to gravity jumps[J]. Chinese Journal of Space Science, 2023, 43(5): 875-882 doi: 10.11728/cjss2023.05.2023-yg12
|
| [9] |
苗楠, 王天舒, 李俊峰. 微重环境下液体晃动研究进展[J]. 力学与实践, 2016, 38(3): 229-236 doi: 10.6052/1000-0879-15-185
MIAO Nan, WANG Tianshu, LI Junfeng. Research progress of liquid sloshing in microgravity[J]. Mechanics in Engineering, 2016, 38(3): 229-236 doi: 10.6052/1000-0879-15-185
|
| [10] |
AOKI K, NAKAMURA T, IGARASHI I, et al. Experimental investigation of baffle effectiveness on nonlinear propellant sloshing in RLV[C]//43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Cincinnati: AIAA, 2007
|
| [11] |
MALEKI A, ZIYAEIFAR M. Sloshing damping in cylindrical liquid storage tanks with baffles[J]. Journal of Sound and Vibration, 2008, 311(1/2): 372-385
|
| [12] |
杨唱, 孙冰, 方杰. 航天器贮箱出流过程液体晃动及防晃[J]. 航空动力学报, 2018, 33(12): 3065-3072
YANG Chang, SUN Bing, FANG Jie. Liquid sloshing and anti-sloshing of spacecraft tank during outflow[J]. Journal of Aerospace Power, 2018, 33(12): 3065-3072
|
| [13] |
于瑾, 李宝海, 王求生, 等. 贮箱防晃挡板结构形式和晃动阻尼研究[J]. 导弹与航天运载技术, 2021(5): 147-149, 154
YU Jin, LI Baohai, WANG Qiusheng, et al. The research of sloshing suppression baffle structure and slosh damping of propellant tank[J]. Missiles and Space Vehicles, 2021(5): 147-149, 154
|
| [14] |
WÖLK G, DREYER M, RATH H J, et al. Damped oscillations of a liquid/gas surface upon step reduction in gravity[J]. Journal of Spacecraft and Rockets, 1997, 34(1): 110-117 doi: 10.2514/2.3179
|
| [15] |
GERSTMANN J, DREYER M E, RATH H J. Surface reorientation upon step reduction in gravity[J]. AIP Conference Proceedings, 2000, 504(1): 847-853
|
| [16] |
MICHAELIS M, DREYER M E, RATH H J. Experimental investigation of the liquid interface reorientation upon step reduction in gravity[J]. Annals of the New York Academy of Sciences, 2002, 974(1): 246-260 doi: 10.1111/j.1749-6632.2002.tb05911.x
|
| [17] |
MICHAELIS M, GERSTMANN J, DREYER M E, et al. Damping behavior of the free liquid interface oscillation upon step reduction in gravity[J]. Proceedings in Applied Mathematics and Mechanics, 2003, 2(1): 320-321 doi: 10.1002/pamm.200310144
|
| [18] |
LI J C, LIN H, LI K, et al. Liquid sloshing in partially filled capsule storage tank undergoing gravity reduction to low/micro-gravity condition[J]. Microgravity Science and Technology, 2020, 32(4): 587-596 doi: 10.1007/s12217-020-09801-3
|
| [19] |
LI J C, LIN H, LI K, et al. Dynamic behavior in a storage tank in reduced gravity using dynamic contact angle method[J]. Microgravity Science and Technology, 2020, 32(6): 1039-1048 doi: 10.1007/s12217-020-09831-x
|
| [20] |
ÖNER D, MCCARTHY T J. Ultrahydrophobic surfaces. Effects of topography length scales on wettability[J]. Langmuir, 2000, 16(20): 7777-7782 doi: 10.1021/la000598o
|
| [21] |
YOSHIMITSU Z, NAKAJIMA A, WATANABE T, et al. Effects of surface structure on the hydrophobicity and sliding behavior of water droplets[J]. Langmuir, 2002, 18(15): 5818-5822 doi: 10.1021/la020088p
|
| [22] |
LIU B, LANGE F F. Pressure induced transition between superhydrophobic states: Configuration diagrams and effect of surface feature size[J]. Journal of Colloid and Interface Science, 2006, 298(2): 899-909 doi: 10.1016/j.jcis.2006.01.025
|
| [23] |
张永海, 薛艳芳, 魏进家, 等. 微重力下微结构表面池沸腾气泡动力学研究[J]. 工程热物理学报, 2013, 34(11): 2112-2115
ZHANG Yonghai, XUE Yanfang, WEI Jinjia, et al. Pool boiling heat transfer and bubble dynamics over micro-pin-finned surface under microgravity[J]. Journal of Engineering Thermophysics, 2013, 34(11): 2112-2115
|
| [24] |
薛艳芳, 魏进家, 赵建福, 等. 微重力下微结构表面强化沸腾换热研究[J]. 工程热物理学报, 2012, 33(3): 441-444
XUE Yanfang, WEI Jinjia, ZHAO Jianfu, et al. Boiling heat transfer enhancement by using micro-structure surface under microgravity[J]. Journal of Engineering Thermophysics, 2012, 33(3): 441-444
|
| [25] |
孔新, 张永海, 魏进家, 等. 微结构表面微重力下沸腾换热及临界机理研究[J]. 工程热物理学报, 2023, 44(6): 1587-1593
KONG Xin, ZHANG Yonghai, WEI Jinjia, et al. Investigation of boiling heat transfer performance and mechanism of critical heat flux for micro-structured surface under microgravity[J]. Journal of Engineering Thermophysics, 2023, 44(6): 1587-1593
|
| [26] |
HIRT C W, NICHOLS B D. Volume of fluid (VOF) method for the dynamics of free boundaries[J]. Journal of Computational Physics, 1981, 39(1): 201-225 doi: 10.1016/0021-9991(81)90145-5
|
| [27] |
魏列, 杜王芳, 赵建福, 等. 微重力条件下部分充液贮箱气液界面波动特性的数值模拟[J]. 力学学报, 2022, 54(4): 1004-1011 doi: 10.6052/0459-1879-21-645
WEI Lie, DU Wangfang, ZHAO Jianfu, et al. Numerical study on gas-liquid interface waves in partially filled tanks under microgravity condition[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(4): 1004-1011 doi: 10.6052/0459-1879-21-645
|
| [28] |
Weislogel M M. Fluid interface phenomena in a low-gravity environment: recent results from drop tower experimentation[C]//Space Forum. Gordon and Breach Science Publishers, 1998, 3(GRC-E-DAA-TN58785)
|
| [29] |
BOSANQUET C H. LV. On the flow of liquids into capillary tubes[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1923, 45(267): 525-531 doi: 10.1080/14786442308634144
|
| [30] |
CAI J C, CHEN Y, LIU Y, et al. Capillary imbibition and flow of wetting liquid in irregular capillaries: A 100-year review[J]. Advances in Colloid and Interface Science, 2022, 304: 102654 doi: 10.1016/j.cis.2022.102654
|