| Citation: | HE Minmin, ZHU Yufeng, LÜ Xuan, TANG Guangyan, QUAN Yuan. Mechanism of the Effect of Ionizing Radiation on Human B Cells Based on Network-guided Random Forest (in Chinese). Chinese Journal of Space Science, 2025, 45(2): 506-516 doi: 10.11728/cjss2025.02.2024-0055 |
| [1] |
REYNOLDS R J, BUKHTIYAROV I V, TIKHONOVA G I, et al. Contrapositive logic suggests space radiation not having a strong impact on mortality of US astronauts and Soviet and Russian cosmonauts[J]. Scientific Reports, 2019, 9(1): 8583 doi: 10.1038/s41598-019-44858-0
|
| [2] |
NILSSON R, LIU N A. Nuclear DNA damages generated by reactive oxygen molecules (ROS) under oxidative stress and their relevance to human cancers, including ionizing radiation-induced neoplasia part I: physical, chemical and molecular biology aspects[J]. Radiation Medicine and Protection, 2020, 1(3): 140-152 doi: 10.1016/j.radmp.2020.09.002
|
| [3] |
ZHU M Q, YANG M D, ZHANG J J, et al. Immunogenic cell death induction by ionizing radiation[J]. Frontiers in Immunology, 2021, 12: 705361 doi: 10.3389/fimmu.2021.705361
|
| [4] |
HOLMBERG O, PINAK M. How often does it happen? A review of unintended, unnecessary and unavoidable high-dose radiation exposures[J]. Journal of Radiological Protection, 2021, 41(4): R189-R201 doi: 10.1088/1361-6498/ac0d64
|
| [5] |
LUMNICZKY K, IMPENS N, ARMENGOL G, et al. Low dose ionizing radiation effects on the immune system[J]. Environment International, 2021, 149: 106212 doi: 10.1016/j.envint.2020.106212
|
| [6] |
SPIELMANN G, AGHA N, KUNZ H, et al. B cell homeostasis is maintained during long-duration spaceflight[J]. Journal of Applied Physiology, 2019, 126(2): 469-476 doi: 10.1152/japplphysiol.00789.2018
|
| [7] |
PAUL A M, OVERBEY E G, DA SILVEIRA W A, et al. Immunological and hematological outcomes following protracted low dose/low dose rate ionizing radiation and simulated microgravity[J]. Scientific Reports, 2021, 11(1): 11452 doi: 10.1038/s41598-021-90439-5
|
| [8] |
GHOSH S, GHOSH A. Activation of DNA damage response signaling in mammalian cells by ionizing radiation[J]. Free Radical Research, 2021, 55(8): 814-827 doi: 10.1080/10715762.2021.1876853
|
| [9] |
ALHARBI F, VAKANSKI A. Machine learning methods for cancer classification using gene expression data: A review[J]. Bioengineering, 2023, 10(2): 173 doi: 10.3390/bioengineering10020173
|
| [10] |
LIU D F, ZHANG X H, ZHENG T, et al. Optimisation and evaluation of the random forest model in the efficacy prediction of chemoradiotherapy for advanced cervical cancer based on radiomics signature from high-resolution T2 weighted images[J]. Archives of Gynecology and Obstetrics, 2021, 303(3): 811-820 doi: 10.1007/s00404-020-05908-5
|
| [11] |
SIGALOVA O M, SHAEIRI A, FORNERIS M, et al. Predictive features of gene expression variation reveal mechanistic link with differential expression[J]. Molecular Systems Biology, 2020, 16(8): e9539 doi: 10.15252/msb.20209539
|
| [12] |
BRUGALETTA R, SANTORO A, ALISI A, et al. 1283 Gene expression analysis of blood cells in radiation health care workers occupationally exposed to ionising radiation[J]. Occupational :Times New Roman;">& Environmental Medicine, 2018, 75(S2): A428
|
| [13] |
SZKLARCZYK D, GABLE A L, NASTOU K C, et al. The STRING database in 2021: customizable protein–protein networks, and functional characterization of user-uploaded gene/measurement sets[J]. Nucleic Acids Research, 2021, 49(D1): D605-D612 doi: 10.1093/nar/gkaa1074
|
| [14] |
LUO Y B, SUN F L, PENG X W, et al. Integrated bioinformatics analysis to identify abnormal methylated differentially expressed genes for predicting prognosis of human colon cancer[J]. International Journal of General Medicine, 2021, 14: 4745-4756 doi: 10.2147/IJGM.S324483
|
| [15] |
DEIST T M, DANKERS F J W M, VALDES G, et al. Machine learning algorithms for outcome prediction in (chemo)radiotherapy: An empirical comparison of classifiers[J]. Medical Physics, 2018, 45(7): 3449-3459 doi: 10.1002/mp.12967
|
| [16] |
HONG S, LEE S, LEE J, et al. Prediction of cardiac arrest in the emergency department based on machine learning and sequential characteristics: model development and retrospective clinical validation study[J]. JMIR Medical Informatics, 2020, 8(8): e15932 doi: 10.2196/15932
|
| [17] |
GUPTA M, LIU X F, TERAOKA S N, et al. Genes affecting ionizing radiation survival identified through combined exome sequencing and functional screening[J]. Human Mutation, 2021, 42(9): 1124-1138 doi: 10.1002/humu.24241
|
| [18] |
DERLIN T, BOGDANOVA N, OHLENDORF F, et al. Assessment of γ-H2AX and 53BP1 foci in peripheral blood lymphocytes to predict subclinical hematotoxicity and response in somatostatin receptor-targeted radionuclide therapy for advanced gastroenteropancreatic neuroendocrine tumors[J]. Cancers, 2021, 13(7): 1516 doi: 10.3390/cancers13071516
|
| [19] |
JENSEN M K, PERS T H, DWORZYNSKI P, et al. Protein interaction-based genome-wide analysis of incident coronary heart disease[J]. Circulation: Cardiovascular Genetics, 2011, 4(5): 549-556 doi: 10.1161/CIRCGENETICS.111.960393
|
| [20] |
SU H, WANG G, ZHU X, XU M, AO P. Endogenous molecular-cellular network theory: A system-biomedical perspective towards complex diseases[J]. Chinese Journal of Nature, 2015, 37(6): 448-454.
|
| [21] |
WU Y D, BYRNE E M, ZHENG Z L, et al. Genome-wide association study of medication-use and associated disease in the UK Biobank[J]. Nature Communications, 2019, 10(1): 1891 doi: 10.1038/s41467-019-09572-5
|
| [22] |
SHARIFI-RAD J, QUISPE C, PATRA J K, et al. Paclitaxel: application in modern oncology and nanomedicine-based cancer therapy[J]. Oxidative Medicine and Cellular Longevity, 2021, 2021: 3687700 doi: 10.1155/2021/3687700
|
| [23] |
LIU X N, LI Z, LIU H, et al. Low concentration flufenamic acid enhances osteogenic differentiation of mesenchymal stem cells and suppresses bone loss by inhibition of the NF-κB signaling pathway[J]. Stem Cell Research :Times New Roman;">& Therapy, 2019, 10(1): 213
|