| Citation: | HUANG Feixiong, XIA Junming, YIN Cong, SUN Yueqiang, BAI Weihua, ZHAI Xiaochun, XU Na, CHEN Lin, HU Xiuqing. Sensitivity Analysis on the Retrieval of Significant Wave Height Using Fengyun-3E GNSS-R (in Chinese). Chinese Journal of Space Science, 2025, 45(2): 353-363 doi: 10.11728/cjss2025.02.2024-0093 |
| [1] |
ZAVOROTNY V U, GLEASON S, CARDELLACH E, et al. Tutorial on remote sensing using GNSS bistatic radar of opportunity[J]. IEEE Geoscience and Remote Sensing Magazine, 2014, 2(4): 8-45 doi: 10.1109/MGRS.2014.2374220
|
| [2] |
MAYERS D R, RUF C S, WARNOCK A M. CYGNSS storm-centric tropical cyclone gridded wind speed product[J]. Journal of Applied Meteorology and Climatology, 2023, 62(3): 329-339 doi: 10.1175/JAMC-D-22-0054.1
|
| [3] |
WARNOCK A M, RUF C S, RUSSEL A, et al. CYGNSS level 3 merged wind speed data product for storm force and surrounding environmental winds[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2024, 17: 6189-6200 doi: 10.1109/JSTARS.2024.3379934
|
| [4] |
MUELLER M J, ANNANE B, LEIDNER S M, et al. Impact of CYGNSS-derived winds on tropical cyclone forecasts in a global and regional model[J]. Monthly Weather Review, 2021, 149(10): 3433-3447 doi: 10.1175/MWR-D-21-0094.1
|
| [5] |
SUN Y Q, HUANG F X, XIA J M, et al. GNOS-II on Fengyun-3 satellite series: exploration of multi-GNSS reflection signals for operational applications[J]. Remote Sensing, 2023, 15(24): 5756 doi: 10.3390/rs15245756
|
| [6] |
JALES P, CARTWRIGHT J, TALPE M, et al. Spire global’s operational GNSS-reflectometry constellation for earth surface observations[C]//Proceedings of 2023 IEEE International Geoscience and Remote Sensing Symposium. Pasadena: IEEE, 2023: 884-887
|
| [7] |
HAUSER D, ABDALLA S, ARDHUIN F, et al. Satellite remote sensing of surface winds, waves, and currents: where are we now?[J]. Surveys in Geophysics, 2023, 44(5): 1357-1446 doi: 10.1007/s10712-023-09771-2
|
| [8] |
AMANI M, GHORBANIAN A, ASGARIMEHR M, et al. Remote sensing systems for ocean: a review (Part 1: passive systems)[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15: 210-234 doi: 10.1109/JSTARS.2021.3130789
|
| [9] |
AMANI M, MOHSENI F, LAYEGH N F, et al. Remote sensing systems for ocean: a review (Part 2: active systems)[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15: 1421-1453 doi: 10.1109/JSTARS.2022.3141980
|
| [10] |
QUEFFEULOU P. Long-term validation of wave height measurements from altimeters[J]. Marine Geodesy, 2004, 27(3/4): 495-510
|
| [11] |
JIA Y J, YANG J G, LIN M S, et al. Global assessments of the HY-2B measurements and cross-calibrations with Jason-3[J]. Remote Sensing, 2020, 12(15): 2470 doi: 10.3390/rs12152470
|
| [12] |
贾永君, 张有广, 林明森. HY-2卫星雷达高度计风速反演验证[J]. 中国工程科学, 2014, 16(6): 54-59
JIA Yongjun, ZHANG Youguang, LIN Mingsen. Verification of HY-2 satellite radar altimeter wind retrieval[J]. Strategic Study of CAE, 2014, 16(6): 54-59
|
| [13] |
STOPA J E, MOUCHE A. Significant wave heights from Sentinel‐1 SAR: validation and applications[J]. Journal of Geophysical Research: Oceans, 2017, 122(3): 1827-1848 doi: 10.1002/2016JC012364
|
| [14] |
QUACH B, GLASER Y, STOPA J E, et al. Deep learning for predicting significant wave height from synthetic aperture radar[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(3): 1859-1867 doi: 10.1109/TGRS.2020.3003839
|
| [15] |
REN L, YANG J S, DONG X, et al. Preliminary significant wave height retrieval from interferometric imaging radar altimeter aboard the Chinese Tiangong-2 space laboratory[J]. Remote Sensing, 2021, 13(12): 2413 doi: 10.3390/rs13122413
|
| [16] |
YE J, WAN Y, DAI Y S. Quality evaluation and calibration of the SWIM significant wave height product with buoy data[J]. Acta Oceanologica Sinica, 2021, 40(10): 187-196 doi: 10.1007/s13131-021-1835-x
|
| [17] |
HAUSER D, TOURAIN C, HERMOZO L, et al. New observations from the SWIM radar on-board CFOSAT: instrument validation and ocean wave measurement assessment[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(1): 5-26 doi: 10.1109/TGRS.2020.2994372
|
| [18] |
GUO J, HE Y J, PERRIE W, et al. A new model to estimate significant wave heights with ERS-1/2 scatterometer data[J]. Chinese Journal of Oceanology and Limnology, 2009, 27(1): 112-116 doi: 10.1007/s00343-009-0112-1
|
| [19] |
WANG H, YANG J S, ZHU J H, et al. Estimation of significant wave heights from ASCAT scatterometer data via deep learning network[J]. Remote Sensing, 2021, 13(2): 195 doi: 10.3390/rs13020195
|
| [20] |
WANG J K, AOUF L, DALPHINET A, et al. The wide swath significant wave height: an innovative reconstruction of significant wave heights from CFOSAT’s SWIM and scatterometer using deep learning[J]. Geophysical Research Letters, 2021, 48(6): e2020GL091276 doi: 10.1029/2020GL091276
|
| [21] |
BU J W, YU K G. Significant wave height retrieval method based on spaceborne GNSS reflectometry[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 1503705
|
| [22] |
WANG C Y, YU K G, ZHANG K F, et al. Significant wave height retrieval based on multivariable regression models developed with CYGNSS data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 4200415
|
| [23] |
WANG F, YANG D K, YANG L. Retrieval and assessment of significant wave height from CYGNSS mission using neural network[J]. Remote Sensing, 2022, 14(15): 3666 doi: 10.3390/rs14153666
|
| [24] |
GÓMEZ-ENRI J, VIGNUDELLI S, QUARTLY G, et al. Bringing satellite radar altimetry closer to shore[C]//Proceedings of SPIE, Society of Photo-Optical Instrumentation Engineers. SPIE, 2009: 1-3
|
| [25] |
ROSMORDUC V, BENVENISTE J, BRONNER E, et al. Radar altimetry tutorial[G/OL]. http://www.altimetry.info, 2011: 112-128
|
| [26] |
HUANG F X, GARRISON J L, LEIDNER S M, et al. A forward model for data assimilation of GNSS ocean reflectometry delay-doppler maps[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(3): 2643-2656 doi: 10.1109/TGRS.2020.3002801
|
| [27] |
ZAVOROTNY V U, VORONOVICH A G. Scattering of GPS signals from the ocean with wind remote sensing application[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(2): 951-964 doi: 10.1109/36.841977
|
| [28] |
CHEN‐ZHANG D D, RUF C S, ARDHUIN F, et al. GNSS‐R nonlocal sea state dependencies: model and empirical verification[J]. Journal of Geophysical Research: Oceans, 2016, 121(11): 8379-8394 doi: 10.1002/2016JC012308
|
| [29] |
SEMEDO A, SUŠELJ K, RUTGERSSON A, et al. A global view on the wind sea and swell climate and variability from ERA-40[J]. Journal of Climate, 2011, 24(5): 1461-1479 doi: 10.1175/2010JCLI3718.1
|
| [30] |
LIN W M, PORTABELLA M, FOTI G, et al. Toward the generation of a wind geophysical model function for spaceborne GNSS-R[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(2): 655-666 doi: 10.1109/TGRS.2018.2859191
|