Volume 45 Issue 2
Apr.  2025
Turn off MathJax
Article Contents
HUANG Feixiong, XIA Junming, YIN Cong, SUN Yueqiang, BAI Weihua, ZHAI Xiaochun, XU Na, CHEN Lin, HU Xiuqing. Sensitivity Analysis on the Retrieval of Significant Wave Height Using Fengyun-3E GNSS-R (in Chinese). Chinese Journal of Space Science, 2025, 45(2): 353-363 doi: 10.11728/cjss2025.02.2024-0093
Citation: HUANG Feixiong, XIA Junming, YIN Cong, SUN Yueqiang, BAI Weihua, ZHAI Xiaochun, XU Na, CHEN Lin, HU Xiuqing. Sensitivity Analysis on the Retrieval of Significant Wave Height Using Fengyun-3E GNSS-R (in Chinese). Chinese Journal of Space Science, 2025, 45(2): 353-363 doi: 10.11728/cjss2025.02.2024-0093

Sensitivity Analysis on the Retrieval of Significant Wave Height Using Fengyun-3E GNSS-R

doi: 10.11728/cjss2025.02.2024-0093 cstr: 32142.14.cjss.2024-0093
  • Received Date: 2024-07-29
  • Rev Recd Date: 2024-08-27
  • Available Online: 2024-09-29
  • The Global Navigation Satellite System Reflectometry (GNSS-R) is a new ocean remote sensing technique using L-band forward quasi-specular scattering navigation signals. After comparing the similarities and differences between GNSS-R and other microwave remote sensing techniques, two methods of retrieving Significant Wave Height (SWH) by GNSS-R are proposed: one is a direct method using the leading edge slope of the normalized delay waveform; the other is indirect based on the sea surface roughness measurement. The feasibility and sensitivity of the two methods are analyzed through theoretical model and actual measurements from Fengyun-3E data. The results show that due to the low ranging accuracy from GNSS signals bandwidth, the leading edge slope is almost insensitive to SWH, which cannot be used for retrieval; the sea surface roughness from GNSS-R can be used to retrieve SWH with an accuracy of about 0.5~0.55 m. Although it still has some limitations, it can be used as a good supplementary means to obtain SWH data. The results of this paper can also provide guidance for the design of future GNSS-R satellite missions.

     

  • loading
  • [1]
    ZAVOROTNY V U, GLEASON S, CARDELLACH E, et al. Tutorial on remote sensing using GNSS bistatic radar of opportunity[J]. IEEE Geoscience and Remote Sensing Magazine, 2014, 2(4): 8-45 doi: 10.1109/MGRS.2014.2374220
    [2]
    MAYERS D R, RUF C S, WARNOCK A M. CYGNSS storm-centric tropical cyclone gridded wind speed product[J]. Journal of Applied Meteorology and Climatology, 2023, 62(3): 329-339 doi: 10.1175/JAMC-D-22-0054.1
    [3]
    WARNOCK A M, RUF C S, RUSSEL A, et al. CYGNSS level 3 merged wind speed data product for storm force and surrounding environmental winds[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2024, 17: 6189-6200 doi: 10.1109/JSTARS.2024.3379934
    [4]
    MUELLER M J, ANNANE B, LEIDNER S M, et al. Impact of CYGNSS-derived winds on tropical cyclone forecasts in a global and regional model[J]. Monthly Weather Review, 2021, 149(10): 3433-3447 doi: 10.1175/MWR-D-21-0094.1
    [5]
    SUN Y Q, HUANG F X, XIA J M, et al. GNOS-II on Fengyun-3 satellite series: exploration of multi-GNSS reflection signals for operational applications[J]. Remote Sensing, 2023, 15(24): 5756 doi: 10.3390/rs15245756
    [6]
    JALES P, CARTWRIGHT J, TALPE M, et al. Spire global’s operational GNSS-reflectometry constellation for earth surface observations[C]//Proceedings of 2023 IEEE International Geoscience and Remote Sensing Symposium. Pasadena: IEEE, 2023: 884-887
    [7]
    HAUSER D, ABDALLA S, ARDHUIN F, et al. Satellite remote sensing of surface winds, waves, and currents: where are we now?[J]. Surveys in Geophysics, 2023, 44(5): 1357-1446 doi: 10.1007/s10712-023-09771-2
    [8]
    AMANI M, GHORBANIAN A, ASGARIMEHR M, et al. Remote sensing systems for ocean: a review (Part 1: passive systems)[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15: 210-234 doi: 10.1109/JSTARS.2021.3130789
    [9]
    AMANI M, MOHSENI F, LAYEGH N F, et al. Remote sensing systems for ocean: a review (Part 2: active systems)[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15: 1421-1453 doi: 10.1109/JSTARS.2022.3141980
    [10]
    QUEFFEULOU P. Long-term validation of wave height measurements from altimeters[J]. Marine Geodesy, 2004, 27(3/4): 495-510
    [11]
    JIA Y J, YANG J G, LIN M S, et al. Global assessments of the HY-2B measurements and cross-calibrations with Jason-3[J]. Remote Sensing, 2020, 12(15): 2470 doi: 10.3390/rs12152470
    [12]
    贾永君, 张有广, 林明森. HY-2卫星雷达高度计风速反演验证[J]. 中国工程科学, 2014, 16(6): 54-59

    JIA Yongjun, ZHANG Youguang, LIN Mingsen. Verification of HY-2 satellite radar altimeter wind retrieval[J]. Strategic Study of CAE, 2014, 16(6): 54-59
    [13]
    STOPA J E, MOUCHE A. Significant wave heights from Sentinel‐1 SAR: validation and applications[J]. Journal of Geophysical Research: Oceans, 2017, 122(3): 1827-1848 doi: 10.1002/2016JC012364
    [14]
    QUACH B, GLASER Y, STOPA J E, et al. Deep learning for predicting significant wave height from synthetic aperture radar[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(3): 1859-1867 doi: 10.1109/TGRS.2020.3003839
    [15]
    REN L, YANG J S, DONG X, et al. Preliminary significant wave height retrieval from interferometric imaging radar altimeter aboard the Chinese Tiangong-2 space laboratory[J]. Remote Sensing, 2021, 13(12): 2413 doi: 10.3390/rs13122413
    [16]
    YE J, WAN Y, DAI Y S. Quality evaluation and calibration of the SWIM significant wave height product with buoy data[J]. Acta Oceanologica Sinica, 2021, 40(10): 187-196 doi: 10.1007/s13131-021-1835-x
    [17]
    HAUSER D, TOURAIN C, HERMOZO L, et al. New observations from the SWIM radar on-board CFOSAT: instrument validation and ocean wave measurement assessment[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(1): 5-26 doi: 10.1109/TGRS.2020.2994372
    [18]
    GUO J, HE Y J, PERRIE W, et al. A new model to estimate significant wave heights with ERS-1/2 scatterometer data[J]. Chinese Journal of Oceanology and Limnology, 2009, 27(1): 112-116 doi: 10.1007/s00343-009-0112-1
    [19]
    WANG H, YANG J S, ZHU J H, et al. Estimation of significant wave heights from ASCAT scatterometer data via deep learning network[J]. Remote Sensing, 2021, 13(2): 195 doi: 10.3390/rs13020195
    [20]
    WANG J K, AOUF L, DALPHINET A, et al. The wide swath significant wave height: an innovative reconstruction of significant wave heights from CFOSAT’s SWIM and scatterometer using deep learning[J]. Geophysical Research Letters, 2021, 48(6): e2020GL091276 doi: 10.1029/2020GL091276
    [21]
    BU J W, YU K G. Significant wave height retrieval method based on spaceborne GNSS reflectometry[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 1503705
    [22]
    WANG C Y, YU K G, ZHANG K F, et al. Significant wave height retrieval based on multivariable regression models developed with CYGNSS data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 4200415
    [23]
    WANG F, YANG D K, YANG L. Retrieval and assessment of significant wave height from CYGNSS mission using neural network[J]. Remote Sensing, 2022, 14(15): 3666 doi: 10.3390/rs14153666
    [24]
    GÓMEZ-ENRI J, VIGNUDELLI S, QUARTLY G, et al. Bringing satellite radar altimetry closer to shore[C]//Proceedings of SPIE, Society of Photo-Optical Instrumentation Engineers. SPIE, 2009: 1-3
    [25]
    ROSMORDUC V, BENVENISTE J, BRONNER E, et al. Radar altimetry tutorial[G/OL]. http://www.altimetry.info, 2011: 112-128
    [26]
    HUANG F X, GARRISON J L, LEIDNER S M, et al. A forward model for data assimilation of GNSS ocean reflectometry delay-doppler maps[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(3): 2643-2656 doi: 10.1109/TGRS.2020.3002801
    [27]
    ZAVOROTNY V U, VORONOVICH A G. Scattering of GPS signals from the ocean with wind remote sensing application[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(2): 951-964 doi: 10.1109/36.841977
    [28]
    CHEN‐ZHANG D D, RUF C S, ARDHUIN F, et al. GNSS‐R nonlocal sea state dependencies: model and empirical verification[J]. Journal of Geophysical Research: Oceans, 2016, 121(11): 8379-8394 doi: 10.1002/2016JC012308
    [29]
    SEMEDO A, SUŠELJ K, RUTGERSSON A, et al. A global view on the wind sea and swell climate and variability from ERA-40[J]. Journal of Climate, 2011, 24(5): 1461-1479 doi: 10.1175/2010JCLI3718.1
    [30]
    LIN W M, PORTABELLA M, FOTI G, et al. Toward the generation of a wind geophysical model function for spaceborne GNSS-R[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(2): 655-666 doi: 10.1109/TGRS.2018.2859191
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(3)

    Article Metrics

    Article Views(618) PDF Downloads(79) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return