Volume 45 Issue 2
Apr.  2025
Turn off MathJax
Article Contents
YIN Yao, LI Yiyang, HUANG Shiyong, XU Sibo, YUAN Zhigang, WU Honghong, JIANG Kui, XIONG Qiyang, LIN Rentong. Magnetic Type Classification of Sunspot Groups Based on Deep Learning (in Chinese). Chinese Journal of Space Science, 2025, 45(2): 253-265 doi: 10.11728/cjss2025.02.2024-0100
Citation: YIN Yao, LI Yiyang, HUANG Shiyong, XU Sibo, YUAN Zhigang, WU Honghong, JIANG Kui, XIONG Qiyang, LIN Rentong. Magnetic Type Classification of Sunspot Groups Based on Deep Learning (in Chinese). Chinese Journal of Space Science, 2025, 45(2): 253-265 doi: 10.11728/cjss2025.02.2024-0100

Magnetic Type Classification of Sunspot Groups Based on Deep Learning

doi: 10.11728/cjss2025.02.2024-0100 cstr: 32142.14.cjss.2024-0100
  • Received Date: 2024-08-07
  • Rev Recd Date: 2024-12-21
  • Available Online: 2025-04-15
  • Solar activity, as a significant manifestation of energy release and material movement in the solar atmosphere, is the main disturbance source of space weather. The violent solar activity represented by sunspots may lead to drastic changes in the near-earth space environment, and then have a profound impact on human production and life. Accurate and efficient prediction of space weather is helpful to reduce its impact on human production. In this paper, a magnetic type classification model of sunspot Mount Wilson based on squeeze-and-excitation module and deep residual network is established by using the continuum map and magnetogram map data observed by the HMI instrument on the Solar Dynamics Observatory (SDO) from 2010 to 2017. In order to effectively avoid the problem of model overfitting caused by the continuity of time series, this paper uses the time series segmentation method to divide the data set, and applies the data augmentation strategy combined with the characteristics of sunspot images to improve the generalization ability of the model. The experimental results show that the model proposed in this study can perform the task of sunspot classification accurately, especially in the recognition of complex sunspots, and its recognition ability has been significantly improved compared with traditional methods. In addition, this paper uses the class activation mapping method to visualize the test set samples, analyzes the feature images extracted from the model and the classification basis, so as to improve the interpretability of the model.

     

  • loading
  • [1]
    程术, 石耀霖, 张怀. 基于神经网络预测太阳黑子变化[J]. 中国科学院大学学报, 2022, 39(5): 615-626

    CHENG Shu, SHI Yaolin, ZHANG Huai. Predicting sunspot variations through neural network[J]. Journal of University of Chinese Academy of Sciences, 2022, 39(5): 615-626
    [2]
    CHEN Z, LIAO W T, LI H M, et al. Prediction of global ionospheric TEC based on deep learning[J]. Space Weather, 2022, 20(4): e2021SW002854 doi: 10.1029/2021SW002854
    [3]
    CHEN Z, ZHOU K C, LI H M, et al. Global TEC map fusion through a hybrid deep learning model: RFGAN[J]. Space Weather, 2023, 21(1): e2022SW003341 doi: 10.1029/2022SW003341
    [4]
    YANG Q L, CHEN Z, TANG R X, et al. Image super-resolution methods for FY-3E X-EUVI 195 Å solar images[J]. The Astrophysical Journal Supplement Series, 2023, 265(2): 36 doi: 10.3847/1538-4365/acb3b9
    [5]
    NGUYEN T T, WILLIS C P, PADDON D J, et al. Learning sunspot classification[J]. Fundamenta Informaticae, 2006, 72(1/2/3): 295-309
    [6]
    ABD M A, MAJED S F, ZHARKOVA V. Automated classification of sunspot groups with support vector machines[M]//Elleithy K, Sobh T, Iskander M, et al. Technological Developments in Networking, Education and Automation. Dordrecht: Springer, 2010: 321-325
    [7]
    FANG Y H, CUI Y M, AO X Z. Deep learning for automatic recognition of magnetic type in sunspot groups[J]. Advances in Astronomy, 2019(1): 9196234
    [8]
    王雅妮. 利用卷积神经网络自动归类太阳黑子[D]. 哈尔滨: 哈尔滨工业大学, 2020

    WANG Yani. Automatic Classification of Sunspots Using Convolutional Neural Networks[D]. Harbin: Harbin Institute of Technology, 2020
    [9]
    He Y B, Yang Y F, Bai X Y, et al. Research on Mount Wilson magnetic classification based on deep learning[J]. Advances in Astronomy, 2021, 2021(1): 5529383
    [10]
    TANG R X, ZENG X W, CHEN Z, et al. Multiple CNN variants and ensemble learning for sunspot group classification by magnetic type[J]. The Astrophysical Journal Supplement Series, 2021, 257(2): 38 doi: 10.3847/1538-4365/ac249f
    [11]
    李书馨, 赵学斌, 陈君, 等. 基于深度学习的太阳黑子Wilson山磁类型识别方法[J]. 空间科学学报, 2022, 42(3): 333-339 doi: 10.11728/cjss2022.03.210107004

    LI Shuxin, ZHAO Xuebin, CHEN Jun, et al. Recognition method for mount Wilson magnetic type of sunspots based on deep learning[J]. Chinese Journal of Space Science, 2022, 42(3): 333-339 doi: 10.11728/cjss2022.03.210107004
    [12]
    樊石鸣. 基于改进ResNet算法的太阳黑子分类方法研究[J]. 现代电子技术, 2024, 47(5): 80-84

    FAN Shiming. Research on sunspot classification method based on improved ResNet algorithm[J]. Modern Electronics Technique, 2024, 47(5): 80-84
    [13]
    HALE G E, ELLERMAN F, NICHOLSON S B, et al. The magnetic polarity of sun-spots[J]. Astrophysical Journal, 1919, 49: 153 doi: 10.1086/142452
    [14]
    SUN C, SHRIVASTAVA A, SINGH S, et al. Revisiting unreasonable effectiveness of data in deep learning era[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV). Venice: IEEE, 2017: 843-852
    [15]
    ZHONG Z, ZHENG L, KANG G L, et al. Random erasing data augmentation[C]//Proceedings of the AAAI Conference on Artificial Intelligence. Washington: AAAI Press, 2020: 13001-13008
    [16]
    HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 7132-7141
    [17]
    HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas: IEEE, 2016: 770-778
    [18]
    ZHOU B L, KHOSLA A, LAPEDRIZA A, et al. Learning deep features for discriminative localization[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas: IEEE, 2016: 2921-2929
    [19]
    AMIN F, MAHMOUD M. Confusion matrix in binary classification problems: A step-by-step tutorial[J]. Journal of Engineering Research, 2022, 6: T1-T12
    [20]
    张开放, 苏华友, 窦勇. 一种基于混淆矩阵的多分类任务准确率评估新方法[J]. 计算机工程与科学, 2021, 43(11): 1910-1919 doi: 10.3969/j.issn.1007-130X.2021.11.002

    ZHANG Kaifang, SU Huayou, DOU Yong. A new multi-classification task accuracy evaluation method based on confusion matrix[J]. Computer Engineering :Times New Roman;">& Science, 2021, 43(11): 1910-1919 doi: 10.3969/j.issn.1007-130X.2021.11.002
    [21]
    LIU S X, XU L, ZHAO Z R, et al. Deep learning based solar flare forecasting model. II. influence of image resolution[J]. The Astrophysical Journal, 2022, 941(1): 20 doi: 10.3847/1538-4357/ac99dc
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(7)

    Article Metrics

    Article Views(405) PDF Downloads(80) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return