Volume 45 Issue 2
Apr.  2025
Turn off MathJax
Article Contents
HUANG Wenbo, CAO Haijun, XIN Yanqing, ZENG Xiaojia, CHEN Jian, LIU Ping, SU Mingyu, ZHANG Ruize, QU Hongkun, SHI Erbin, LIU Changqing, XU Xuesen, LING Zongcheng, WU Xing. Progress in Mineral Exploration and Sample Collection by Perseverance Rover on Mars (2021-2024) (in Chinese). Chinese Journal of Space Science, 2025, 45(2): 288-309 doi: 10.11728/cjss2025.02.2024-0119
Citation: HUANG Wenbo, CAO Haijun, XIN Yanqing, ZENG Xiaojia, CHEN Jian, LIU Ping, SU Mingyu, ZHANG Ruize, QU Hongkun, SHI Erbin, LIU Changqing, XU Xuesen, LING Zongcheng, WU Xing. Progress in Mineral Exploration and Sample Collection by Perseverance Rover on Mars (2021-2024) (in Chinese). Chinese Journal of Space Science, 2025, 45(2): 288-309 doi: 10.11728/cjss2025.02.2024-0119

Progress in Mineral Exploration and Sample Collection by Perseverance Rover on Mars (2021-2024)

doi: 10.11728/cjss2025.02.2024-0119 cstr: 32142.14.cjss.2024-0119
  • Received Date: 2024-09-20
  • Rev Recd Date: 2024-11-07
  • Available Online: 2024-12-09
  • NASA’s Perseverance Mars rover successfully landed in Jezero crater (18.4°N, 77.7°E) on 18 February 2021, and has been operating for nearly four years (2021-2024). To achieve these goals, Perseverance is equipped with four spectrometric payloads: SuperCam, Mastcam-Z, Scanning Habitable Environments with Raman and Luminescence for Organics and Chemicals (SHERLOC) and Planetary Instrument for X-ray Lithochemistry (PIXL), allowing for detailed elemental and mineral analyses of surface materials. Comprehensive analyses have been conducted across several key geological units within Jezero crater, including the crater floor, delta front, upper fan, and margin unit. Each area’s unique mineral compositions have been documented, revealing important information on Mars’ geological and environmental evolution. The results indicate that Jezero crater region has undergone multiple aqueous alteration processes, leaving mineral evidence of historical water activity. These findings suggest that the region, especially the west delta, was once exposed to prolonged aqueous environments, potentially providing insights into Mars’ paleoclimate, water salinity and possible habitability. Using its Sampling and Caching Subsystem (SCS), Perseverance has collected 21 rock core samples from various geological units, including igneous rocks from the crater floor and sedimentary rocks from the delta. These samples will undergo detailed analyses on Earth, expected to yield valuable insights into Mars’ magmatic evolution, sedimentary history, water-rock interactions, geological development, and potential biosignatures. In summary, the comprehensive data collected by Perseverance has expanded our understanding of Mars, particularly Jezero crater, and provides a foundational reference for future Mars exploration and sample return missions, including China’s Tianwen-3 mission.

     

  • loading
  • [1]
    刘洋, 吴兴, 刘正豪, 等. 火星的地质演化和宜居环境研究进展[J]. 地球与行星物理论评, 2021, 52(4): 416-436

    LIU Yang, WU Xing, LIU Zhenghao, et al. Geological evolution and habitable environment of Mars: Progress and prospects[J]. Reviews of Geophysics and Planetary Physics, 2021, 52(4): 416-436
    [2]
    EHLMANN B L, EDWARDS C S. Mineralogy of the Martian surface[J]. Annual Review of Earth and Planetary Sciences, 2014, 42(1): 291-315 doi: 10.1146/annurev-earth-060313-055024
    [3]
    ROVER TEAM. Characterization of the Martian surface deposits by the Mars Pathfinder rover, Sojourner[J]. Science, 1997, 278(5344): 1765-1768 doi: 10.1126/science.278.5344.1765
    [4]
    BLAKE D, TU V, BRISTOW T, et al. The Chemistry and Mineralogy (CheMin) X-ray diffractometer on the MSL Curiosity rover: A decade of mineralogy from Gale crater, Mars[J]. Minerals, 2024, 14(6): 568 doi: 10.3390/min14060568
    [5]
    RAMPE E B, BLAKE D F, BRISTOW T F, et al. Mineralogy and geochemistry of sedimentary rocks and eolian sediments in Gale crater, Mars: A review after six Earth years of exploration with Curiosity[J]. Geochemistry, 2020, 80(2): 125605 doi: 10.1016/j.chemer.2020.125605
    [6]
    李春来, 刘建军, 耿言, 等. 中国首次火星探测任务科学目标与有效载荷配置[J]. 深空探测学报, 2018, 5(5): 406-413

    LI Chunlai, LIU Jianjun, GENG Yan, et al. Scientific objectives and payload configuration of China’s first Mars exploration mission[J]. Journal of Deep Space Exploration, 2018, 5(5): 406-413
    [7]
    林红磊, 林杨挺, 魏勇, 等. “祝融号”在轨定标光谱揭示火星北部低地卤水活动的矿物学证据[J]. 中国科学: 地球科学, 2023, 53(11): 2506-2515

    LIN Honglei, LIN Yangting, WEI Yong, et al. Mineralogical evidence of water activity in the northern lowlands of Mars based on inflight-calibrated spectra from the Zhurong rover[J]. Science China Earth Sciences, 2023, 66(11): 2463-2472
    [8]
    谢涓, 闫凯, 康志忠, 等. “祝融号”火星车多光谱相机岩矿类型识别的地面验证研究[J]. 遥感学报, 2021, 25(7): 1385-1399 doi: 10.11834/jrs.20211065

    XIE Juan, YAN Kai, KANG Zhizhong, et al. Verification study for the mineral and rock identification using multispectral camera of the “Zhurong” Mars Rover on the earth[J]. National Remote Sensing Bulletin, 2021, 25(7): 1385-1399 doi: 10.11834/jrs.20211065
    [9]
    WAN W X, WANG C, LI C L, et al. The payloads of planetary physics research onboard China’s First Mars Mission (Tianwen-1)[J]. Earth and Planetary Physics, 2020, 4(4): 331-332 doi: 10.26464/epp2020052
    [10]
    WU B, DONG J, WANG Y R, et al. Characterization of the candidate landing region for Tianwen-1-China's first mission to Mars[J]. Earth and Space Science, 2021, 8(6): e2021EA001670 doi: 10.1029/2021EA001670
    [11]
    LIU C Q, LING Z C, WU Z C, et al. Aqueous alteration of the Vastitas Borealis Formation at the Tianwen-1 landing site[J]. Communications Earth :Times New Roman;">& Environment, 2022, 3(1): 280
    [12]
    LIU J J, LI C L, ZHANG R Q, et al. Geomorphic contexts and science focus of the Zhurong landing site on Mars[J]. Nature Astronomy, 2021, 6(1): 65-71 doi: 10.1038/s41550-021-01519-5
    [13]
    LI C, ZHENG Y K, WANG X, et al. Layered subsurface in Utopia Basin of Mars revealed by Zhurong rover radar[J]. Nature, 2022, 610(7931): 308-312 doi: 10.1038/s41586-022-05147-5
    [14]
    FARLEY K A, WILLIFORD K H, STACK K M, et al. Mars 2020 mission overview[J]. Space Science Reviews, 2020, 216(8): 142 doi: 10.1007/s11214-020-00762-y
    [15]
    WILLIFORD K H, FARLEY K A, STACK K M, et al. The NASA Mars 2020 Rover Mission and the Search for Extraterrestrial Life[M]//CABROL N A, GRIN E A. From Habitability to Life on Mars. Amsterdam: Elsevier, 2018: 275-308
    [16]
    WERNER S C, IVANOV B A, NEUKUM G. Theoretical analysis of secondary cratering on Mars and an image-based study on the Cerberus Plains[J]. Icarus, 2009, 200(2): 406-417 doi: 10.1016/j.icarus.2008.10.011
    [17]
    MANDON L, QUANTIN-NATAF C, THOLLOT P, et al. Refining the age, emplacement and alteration scenarios of the olivine-rich unit in the Nili Fossae region, Mars[J]. Icarus, 2020, 336: 113436 doi: 10.1016/j.icarus.2019.113436
    [18]
    FASSETT C I, HEAD J W. Sequence and timing of conditions on early Mars[J]. Icarus, 2011, 211(2): 1204-1214 doi: 10.1016/j.icarus.2010.11.014
    [19]
    FASSETT C I, HEAD J W. Fluvial sedimentary deposits on Mars: Ancient deltas in a crater lake in the Nili Fossae region[J]. Geophysical Research Letters, 2005, 32(14): 2005GL023456 doi: 10.1029/2005GL023456
    [20]
    MANGOLD N, DROMART G, ANSAN V, et al. Fluvial regimes, morphometry, and age of Jezero crater paleolake inlet valleys and their exobiological significance for the 2020 rover mission landing site[J]. Astrobiology, 2020, 20(8): 994-1013 doi: 10.1089/ast.2019.2132
    [21]
    SCHON S C, HEAD J W, FASSETT C I. An overfilled lacustrine system and progradational delta in Jezero crater, Mars: Implications for Noachian climate[J]. Planetary and Space Science, 2012, 67(1): 28-45 doi: 10.1016/j.pss.2012.02.003
    [22]
    STACK K M, WILLIAMS N R, CALEF III F, et al. Photogeologic map of the Perseverance rover field site in Jezero crater constructed by the Mars 2020 science team[J]. Space Science Reviews, 2020, 216(8): 127 doi: 10.1007/s11214-020-00739-x
    [23]
    HORGAN B H N, ANDERSON R B, DROMART G, et al. The mineral diversity of Jezero crater: Evidence for possible lacustrine carbonates on Mars[J]. Icarus, 2020, 339: 113526 doi: 10.1016/j.icarus.2019.113526
    [24]
    GOUDGE T A, MOHRIG D, CARDENAS B T, et al. Stratigraphy and paleohydrology of delta channel deposits, Jezero crater, Mars[J]. Icarus, 2018, 301: 58-75 doi: 10.1016/j.icarus.2017.09.034
    [25]
    MANGOLD N, GUPTA S, GASNAULT O, et al. Perseverance rover reveals an ancient delta-lake system and flood deposits at Jezero crater, Mars[J]. Science, 2021, 374(6568): 711-717 doi: 10.1126/science.abl4051
    [26]
    BRAMBLE M S, MUSTARD J F, SALVATORE M R. The geological history of Northeast Syrtis Major, Mars[J]. Icarus, 2017, 293: 66-93 doi: 10.1016/j.icarus.2017.03.030
    [27]
    EHLMANN B L, MUSTARD J F. An in-situ record of major environmental transitions on early Mars at Northeast Syrtis Major[J]. Geophysical Research Letters, 2012, 39(11): 2012GL051594 doi: 10.1029/2012GL051594
    [28]
    GOUDGE T A, MUSTARD J F, HEAD J W, et al. Assessing the mineralogy of the watershed and fan deposits of the Jezero crater paleolake system, Mars[J]. Journal of Geophysical Research: Planets, 2015, 120(4): 775-808 doi: 10.1002/2014JE004782
    [29]
    POULET F, BIBRING J P, MUSTARD J F, et al. Phyllosilicates on Mars and implications for early martian climate[J]. Nature, 2005, 438(7068): 623-627 doi: 10.1038/nature04274
    [30]
    MUSTARD J F, EHLMANN B L, MURCHIE S L, et al. Composition, morphology, and stratigraphy of noachian crust around the Isidis basin[J]. Journal of Geophysical Research: Planets, 2009, 114(E2): E00D12
    [31]
    EHLMANN B L, MUSTARD J F, SWAYZE G A, et al. Identification of hydrated silicate minerals on Mars using MRO-CRISM: Geologic context near Nili Fossae and implications for aqueous alteration[J]. Journal of Geophysical Research: Planets, 2009, 114(E2): E00D08
    [32]
    HOEFEN T M, CLARK R N, BANDFIELD J L, et al. Discovery of olivine in the Nili Fossae region of Mars[J]. Science, 2003, 302(5645): 627-630 doi: 10.1126/science.1089647
    [33]
    EHLMANN B L, MUSTARD J F, FASSETT C I, et al. Clay minerals in delta deposits and organic preservation potential on Mars[J]. Nature Geoscience, 2008, 1(6): 355-358 doi: 10.1038/ngeo207
    [34]
    AMADOR E S, BANDFIELD J L. Elevated bulk-silica exposures and evidence for multiple aqueous alteration episodes in Nili Fossae, Mars[J]. Icarus, 2016, 276: 39-51 doi: 10.1016/j.icarus.2016.04.015
    [35]
    BALARAM J, AUNG M, GOLOMBEK M P. The Ingenuity helicopter on the Perseverance rover[J]. Space Science Reviews, 2021, 217(4): 56 doi: 10.1007/s11214-021-00815-w
    [36]
    MAURICE S, WIENS R C, BERNARDI P, et al. The SuperCam instrument suite on the Mars 2020 rover: Science objectives and mast-unit description[J]. Space Science Reviews, 2021, 217(3): 47 doi: 10.1007/s11214-021-00807-w
    [37]
    WIENS R C, MAURICE S, ROBINSON S H, et al. The SuperCam instrument suite on the NASA Mars 2020 rover: Body unit and combined system tests[J]. Space Science Reviews, 2021, 217(1): 4 doi: 10.1007/s11214-020-00777-5
    [38]
    BELL J F, MAKI J N, MEHALL G L, et al. The Mars 2020 Perseverance rover Mast Camera Zoom (Mastcam-Z) multispectral, stereoscopic imaging investigation[J]. Space Science Reviews, 2021, 217(1): 24 doi: 10.1007/s11214-020-00755-x
    [39]
    BHARTIA R, BEEGLE L W, DEFLORES L, et al. Perseverance’s Scanning Habitable Environments with Raman and Luminescence for Organics and Chemicals (SHERLOC) investigation[J]. Space Science Reviews, 2021, 217(4): 58 doi: 10.1007/s11214-021-00812-z
    [40]
    WOGSLAND B V, MINITTI M E, KAH L C, et al. Science and science-enabling activities of the SHERLOC and WATSON imaging systems in Jezero crater, Mars[J]. Earth and Space Science, 2023, 10(11): e2022EA002544 doi: 10.1029/2022EA002544
    [41]
    ALLWOOD A C, WADE L A, FOOTE M C, et al. PIXL: Planetary instrument for X-ray lithochemistry[J]. Space Science Reviews, 2020, 216(8): 134 doi: 10.1007/s11214-020-00767-7
    [42]
    MOELLER R C, JANDURA L, ROSETTE K, et al. The Sampling and Caching Subsystem (SCS) for the scientific exploration of Jezero crater by the Mars 2020 Perseverance rover[J]. Space Science Reviews, 2021, 217(1): 5 doi: 10.1007/s11214-020-00783-7
    [43]
    COUSIN A, SAUTTER V, FABRE C, et al. SuperCam calibration targets on board the Perseverance rover: Fabrication and quantitative characterization[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2022, 188: 106341 doi: 10.1016/j.sab.2021.106341
    [44]
    MADARIAGA J M, ARAMENDIA J, ARANA G, et al. Homogeneity assessment of the SuperCam calibration targets onboard rover Perseverance[J]. Analytica Chimica Acta, 2022, 1209: 339837 doi: 10.1016/j.aca.2022.339837
    [45]
    ANDERSON R B, FORNI O, COUSIN A, et al. Post-landing major element quantification using SuperCam laser induced breakdown spectroscopy[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2022, 188: 106347 doi: 10.1016/j.sab.2021.106347
    [46]
    BEYSSAC O. New trends in Raman spectroscopy: From high-resolution geochemistry to planetary exploration[J]. Elements, 2020, 16(2): 117-122 doi: 10.2138/gselements.16.2.117
    [47]
    FOUCHET T, REESS J M, MONTMESSIN F, et al. The SuperCam infrared spectrometer for the Perseverance rover of the Mars2020 mission[J]. Icarus, 2022, 373: 114773 doi: 10.1016/j.icarus.2021.114773
    [48]
    FAU A, BEYSSAC O, GAUTHIER M, et al. Pulsed laser-induced heating of mineral phases: Implications for laser-induced breakdown spectroscopy combined with Raman spectroscopy[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2019, 160: 105687 doi: 10.1016/j.sab.2019.105687
    [49]
    HAYES A G, CORLIES P, TATE C, et al. Pre-flight calibration of the Mars 2020 rover Mastcam Zoom (Mastcam-Z) multispectral, stereoscopic imager[J]. Space Science Reviews, 2021, 217(2): 29 doi: 10.1007/s11214-021-00795-x
    [50]
    KINCH K M, MADSEN M B, BELL J F, et al. Radiometric calibration targets for the Mastcam-Z camera on the Mars 2020 rover mission[J]. Space Science Reviews, 2020, 216(8): 141 doi: 10.1007/s11214-020-00774-8
    [51]
    RICE M S, JOHNSON J R, MILLION C C, et al. Spectral variability of rocks and soils on the Jezero crater floor: A summary of multispectral observations from Perseverance’s Mastcam-Z instrument[J]. Journal of Geophysical Research: Planets, 2023, 128(10): e2022JE007548 doi: 10.1029/2022JE007548
    [52]
    BHARTIA R, HUG W F, REID R D. Improved sensing using simultaneous deep UV Raman and fluorescence detection[C]//Proceedings Volume 8358, Chemical, Biological, Radiological, Nuclear, and Explosives (CBRNE) Sensing XIII. Baltimore: SPIE, 2012
    [53]
    FRIES M D, LEE C, BHARTIA R, et al. The SHERLOC calibration target on the Mars 2020 Perseverance rover: Design, operations, outreach, and future human exploration functions[J]. Space Science Reviews, 2022, 218(6): 46 doi: 10.1007/s11214-022-00907-1
    [54]
    UCKERT K, BHARTIA R, BEEGLE L W, et al. Calibration of the SHERLOC deep ultraviolet fluorescence-Raman spectrometer on the Perseverance rover[J]. Applied Spectroscopy, 2021, 75(7): 763-773 doi: 10.1177/00037028211013368
    [55]
    RAZZELL HOLLIS J, MOORE K R, SHARMA S, et al. The power of paired proximity science observations: Co-located data from SHERLOC and PIXL on Mars[J]. Icarus, 2022, 387: 115179 doi: 10.1016/j.icarus.2022.115179
    [56]
    SCHELLER E L, RAZZELL HOLLIS J, CARDARELLI E L, et al. Aqueous alteration processes in Jezero crater, Mars-implications for organic geochemistry[J]. Science, 2022, 378(6624): 1105-1110 doi: 10.1126/science.abo5204
    [57]
    JENS E, TARANTINO P, PREUDHOMME M, et al. Precision cleaning samples for science analysis using a gas-based dust removal tool[C]//Proceedings of 2017 IEEE Aerospace Conference. Big Sky: IEEE, 2017
    [58]
    International MSR Objectives and Samples Team (IMOST), BEATY D W, GRADY M M, et al. The potential science and engineering value of samples delivered to Earth by Mars sample return[J]. Meteoritics :Times New Roman;">& Planetary Science, 2019, 54(3): 667-671
    [59]
    KRONYAK R E, KRUGER A W, SUN V Z, et al. Development and execution of the Mars 2020 Perseverance rover’s sampling strategy[C]//Proceedings of 2024 IEEE Aerospace Conference. Big Sky: IEEE, 2024
    [60]
    SUN V Z, HAND K P, STACK K M, et al. Exploring the Jezero crater floor: Overview of results from the Mars 2020 Perseverance rover’s first science campaign[C]//Proceedings of the 53rd Lunar and Planetary Science Conference. Woodlands: Lunar and Planetary Institute, 2022
    [61]
    WILLIAMS A J, RUSSELL P S, SUN V Z, et al. Exploring the Jezero delta front: Overview of results from the Mars 2020 Perseverance rover’s second science campaign[C]//Proceedings of the 54th Lunar and Planetary Science Conference. Woodlands: Universities Space Research Association, Lunar and Planetary Institute, 2023
    [62]
    NACHON M, SIEBACH K L, SHOLES S F, et al. Overview of the Mars 2020 mission Perseverance rover third science campaign: Exploring Jezero crater’s upper fan[C]//Proceedings of the 55th Lunar and Planetary Science Conference. Woodlands: Lunar and Planetary Institute, 2024
    [63]
    HORGAN B, GARCZYNSKI B, GUPTA S, et al. Campaign overview and initial results from exploration of the margin unit in Jezero crater by the Perseverance rover[C]//Proceedings of the 55th Lunar and Planetary Science Conference. Woodlands: Lunar and Planetary Institute, 2024
    [64]
    SCHMIDT M E, ALLWOOD A, CHRISTIAN J, et al. Highly differentiated basaltic lavas examined by PIXL in Jezero crater[C]//Proceedings of the 53rd Lunar and Planetary Science Conference. Woodlands: Lunar and Planetary Institute, 2022
    [65]
    UDRY A, OSTWALD A, SAUTTER V, et al. A Mars 2020 Perseverance SuperCam perspective on the igneous nature of the Máaz formation at Jezero crater and link with Séítah, Mars[J]. Journal of Geophysical Research: Planets, 2023, 128(7): e2022JE007440 doi: 10.1029/2022JE007440
    [66]
    WIENS R C, UDRY A, BEYSSAC O, et al. Compositionally and density stratified igneous terrain in Jezero crater, Mars[J]. Science Advances, 2022, 8(34): eabo3399 doi: 10.1126/sciadv.abo3399
    [67]
    SIMON J I, HICKMAN-LEWIS K, COHEN B A, et al. Samples collected from the floor of Jezero crater with the Mars 2020 Perseverance rover[J]. Journal of Geophysical Research: Planets, 2023, 128(6): e2022JE007474 doi: 10.1029/2022JE007474
    [68]
    SUN V Z, HAND K P, STACK K M, et al. Overview and results from the Mars 2020 Perseverance rover’s first science campaign on the Jezero crater floor[J]. Journal of Geophysical Research: Planets, 2023, 128(6): e2022JE-007613 doi: 10.1029/2022JE007613
    [69]
    CLAVé E, BENZERARA K, MESLIN P Y, et al. Carbonate detection with SuperCam in igneous rocks on the floor of Jezero crater, Mars[J]. Journal of Geophysical Research: Planets, 2023, 128(6): e2022JE007463 doi: 10.1029/2022JE007463
    [70]
    CORPOLONGO A, JAKUBEK R S, BURTON A S, et al. SHERLOC Raman mineral class detections of the Mars 2020 crater floor campaign[J]. Journal of Geophysical Research: Planets, 2023, 128(3): e2022JE007455 doi: 10.1029/2022JE007455
    [71]
    FARLEY K A, STACK K M, SHUSTER D L, et al. Aqueously altered igneous rocks sampled on the floor of Jezero crater, Mars[J]. Science, 2022, 377(6614): eabo2196 doi: 10.1126/science.abo2196
    [72]
    MANDON L, QUANTIN-NATAF C, ROYER C, et al. Reflectance of Jezero crater floor: 2. Mineralogical interpretation[J]. Journal of Geophysical Research: Planets, 2023, 128(7): e2022JE007450 doi: 10.1029/2022JE007450
    [73]
    TICE M M, HUROWITZ J A, ALLWOOD A C, et al. Alteration history of Séítah formation rocks inferred by PIXL X-ray fluorescence, X-ray diffraction, and multispectral imaging on Mars[J]. Science Advances, 2022, 8(47): eabp9084 doi: 10.1126/sciadv.abp9084
    [74]
    BEYSSAC O, FORNI O, COUSIN A, et al. Petrological traverse of the olivine cumulate Séítah formation at Jezero crater, Mars: A perspective from SuperCam onboard Perseverance[J]. Journal of Geophysical Research: Planets, 2023, 128(7): e2022JE007638 doi: 10.1029/2022JE007638
    [75]
    BELL J F, MAKI J N, ALWMARK S, et al. Geological, multispectral, and meteorological imaging results from the Mars 2020 Perseverance rover in Jezero crater[J]. Science Advances, 2022, 8(47): eabo4856 doi: 10.1126/sciadv.abo4856
    [76]
    GARCZYNSKI B J, BELL III J F, HORGAN B H N, et al. Perseverance and the purple coating: A Mastcam-Z multispectral story[C]//Proceedings of the 53rd Lunar and Planetary Science Conference. Woodlands: Lunar and Planetary Institute, 2022
    [77]
    SHARMA S, ROPPEL R D, MURPHY A E, et al. Diverse organic-mineral associations in Jezero crater, Mars[J]. Nature, 2023, 619(7971): 724-732 doi: 10.1038/s41586-023-06143-z
    [78]
    STACK K M, IVES L R W, GUPTA S, et al. Sedimentology and stratigraphy of the Shenandoah formation, western Fan, Jezero crater, Mars[J]. Journal of Geophysical Research: Planets, 2024, 129(2): e2023JE008187 doi: 10.1029/2023JE008187
    [79]
    BROZ A P, HORGAN B H, KALUCHA H, et al. Biosignature preservation potential of sulfate-rich rocks from Hogwallow Flats, Jezero crater, Mars[C]//Proceedings of the 55th Lunar and Planetary Science Conference. Woodlands: Lunar and Planetary Institute, 2024
    [80]
    DEHOUCK E, FORNI O, QUANTIN-NATAF C, et al. Overview of the bedrock geochemistry and mineralogy observed by SuperCam during Perseverance's delta front campaign[C]//Proceedings of the 54th Lunar and Planetary Science Conference. Woodlands: Lunar and Planetary Institute, 2023
    [81]
    HUROWITZ J A, CATLING D C, FISCHER W W. High carbonate alkalinity lakes on Mars and their potential role in an origin of life beyond earth[J]. Elements, 2023, 19(1): 37-44 doi: 10.2138/gselements.19.1.37
    [82]
    NACHON M, LÓPEZ-REYES G, MESLIN P Y, et al. Light-toned veins and material in Jezero crater, Mars, as seen in-situ via NASA’s Perseverance rover (Mars 2020 mission): stratigraphic distribution and compositional results[C]//Proceedings of the 55th Lunar and Planetary Science Conference. Woodlands: Lunar and Planetary Institute, 2024
    [83]
    NÚÑEZ J I, JOHNSON J R, RICE M S, et al. Spectral diversity in fluvio-deltaic deposits in the western delta fan in Jezero crater, Mars as seen with Mastcam-Z on the Mars 2020 Perseverance rover[C]//Proceedings of the 55th Lunar and Planetary Science Conference. Woodlands: Lunar and Planetary Institute, 2024
    [84]
    ROYER C, POULET F, WIENS R C, et al. Jezero delta mineralogical diversity revealed by SuperCam infrared spectral modeling[C]//Proceedings of the 54th Lunar and Planetary Science Conference. Woodlands: Lunar and Planetary Institute, 2023
    [85]
    BOSAK T, SHUSTER D L, WEISS B, et al. Astrobiological potential of rocks acquired by the Perseverance rover at the front of the western sediment fan in Jezero crater, Mars[C]//Proceedings of the 55th Lunar and Planetary Science Conference. Woodlands: Lunar and Planetary Institute, 2024
    [86]
    GARCZYNSKI B J, HORGAN B H N, JOHNSON J R, et al. Rock coatings as evidence for late surface alteration on the floor of Jezero crater, Mars[EB/OL]. ESS Open Archive, (2023-07-08)[2024-07-16]. https://doi.org/10.22541/essoar.168882010.05601670/v1
    [87]
    BEYSSAC O, CLAVÉ E, DEHOUCK E, et al. A journey across the transition between the igneous Séítah floor unit and the delta with the Mars2020 SuperCam instrument at Jezero crater, Mars[C]//Proceedings of the 54th Lunar and Planetary Science Conference. Woodlands: Lunar and Planetary Institute, 2023
    [88]
    BENISON K C, GILL K K, SHARMA S, et al. Depositional and diagenetic sulfates of Hogwallow Flats and Yori Pass, Jezero crater: Evaluating preservation potential of environmental indicators and possible biosignatures from past Martian surface waters and ground-waters[J]. Journal of Geophysical Research: Planets, 2024, 129(2): e2023JE008155 doi: 10.1029/2023JE008155
    [89]
    PHUA Y Y, EHLMANN B L, SILJESTRÖM S, et al. Sulfates as hydration carrier phases in altered rocks of Jezero crater fan and floor geologic units from SHERLOC on Mars 2020[C]//Proceedings of AGU Fall Meeting. San Francisco: AGU, 2023
    [90]
    LOPEZ-REYES G, NACHON M, VENERANDA M, et al. Anhydrite detections by Raman spectroscopy with SuperCam at the Jezero delta, Mars[C]//Proceedings of the 54th Lunar and Planetary Science Conference. Woodlands: Lunar and Planetary Institute, 2023
    [91]
    FORNI O, BEDFORD C C, ROYER C, et al. Nickel-copper deposits on Mars? Discovery of ore-grade abundances, and implications on formation and alteration[C]//Proceedings of the 55th Lunar and Planetary Science Conference. Woodlands: Lunar and Planetary Institute, 2024
    [92]
    CARAVACA G, DROMART G, MANGOLD N, et al. Depositional facies and sequence stratigraphy of Kodiak Butte, western Delta of Jezero crater, Mars[J]. Journal of Geophysical Research: Planets, 2024, 129(4): e2023JE008205 doi: 10.1029/2023JE008205
    [93]
    GUPTA S, STACK MORGAN K, MANGOLD N, et al. Going with the flow: Sedimentary evolution of the Jezero western fan, Mars[C]//Proceedings of the 55th Lunar and Planetary Science Conference. Woodlands: Lunar and Planetary Institute, 2024
    [94]
    TICE M M, HUROWITZ J A, SIEBACH K L, et al. Regional paleoenvironments recorded in sedimentary rocks of the western Fan-Delta, Jezero crater, Mars[C]//Proceedings of the 55th Lunar and Planetary Science Conference. Woodlands: Lunar and Planetary Institute, 2024
    [95]
    WEISS B P, NACHON M, SIEBACH K, et al. Perseverance samples from the Jezero upper Fan[C]//Proceedings of the 55th Lunar and Planetary Science Conference. Woodlands: Lunar and Planetary Institute, 2024
    [96]
    BEYSSAC O, CLAVÉ E, UDRY A, et al. What are the olivine-rich boulders in the Upper Fan and Margin Unit at Jezero crater, Mars?[C]//Proceedings of the 55th Lunar and Planetary Science Conference. Woodlands: Lunar and Planetary Institute, 2024
    [97]
    DEHOUCK E, CLAVÉ E, BEYSSAC O, et al. Pristine pyroxene-bearing boulders analyzed by SuperCam in the Jezero western Fan, Mars[C]//Proceedings of the 55th Lunar and Planetary Science Conference. Woodlands: Lunar and Planetary Institute, 2024
    [98]
    KIZOVSKI T V, SCHMIDT M E, O'NEIL L, et al. Fe-phosphates in the Jezero crater fan: Implications for habitability and sample return[C]//Proceedings of the 54th Lunar and Planetary Science Conference. Woodlands: Lunar and Planetary Institute, 2024
    [99]
    SILJESTRÖM S, FARLEY K A, BOSAK T, et al. Sampling the margin unit of Jezero crater, Mars for future Mars sample return[C]//Proceedings of the 55th Lunar and Planetary Science Conference. Woodlands: Lunar and Planetary Institute, 2024
    [100]
    CLAVÉ E, BECK P, BEYSSAC O, et al. New constraints on the “Marginal Carbonates” from in situ observations with SuperCam, Mars2020[C]//Proceedings of Europlanet Science Congress. Berlin: Freie Universität, 2024
    [101]
    GARCZYNSKI B J, JOHNSON J R, HORGAN B, et al. Initial Mastcam-Z multispectral results from the Perseverance rover’s exploration of the Margin Unit in Jezero crater, Mars[C]//Proceedings of the 55th Lunar and Planetary Science Conference. Woodlands: Lunar and Planetary Institute, 2024
    [102]
    WIENS R C, CLAVÉ E, BECK P, et al. Chemistry and mineralogy of the margin unit, Jezero crater, Mars, observed by M2020 / SuperCam[C]//Proceedings of the 55th Lunar and Planetary Science Conference. Woodlands: Lunar and Planetary Institute, 2024
    [103]
    MANSBACH E N, MANSBACH E N, KIZOVSKI T V, et al. Likely ferromagnetic minerals identified by the Perseverance rover and implications for future paleomagnetic analyses of returned martian samples[J]. Journal of Geophysical Research: Planets, 2024, 129(9): e2024JE008505 doi: 10.1029/2024JE008505
    [104]
    ROYER C, BEDFORD R C, WIENS R C, et al. Mineral composition of Al-rich float rocks in Jezero crater as seen by SuperCam[C]//Proceedings of the 55th Lunar and Planetary Science Conference. Woodlands: Lunar and Planetary Institute, 2024
    [105]
    WEISS B P, MANSBACH E N, CARSTEN J L, et al. Oriented bedrock samples drilled by the Perseverance rover on Mars[J]. Earth and Space Science, 2024, 11(3): e2023EA003322 doi: 10.1029/2023EA003322
    [106]
    ZORZANO M P, MARTÍNEZ G, POLKKO J, et al. Present-day thermal and water activity environment of the Mars Sample Return collection[J]. Scientific Reports, 2024, 14(1): 7175 doi: 10.1038/s41598-024-57458-4
    [107]
    SILJESTRÖM S, CZAJA A D, CORPOLONGO A, et al. Evidence of sulfate‐rich fluid alteration in Jezero crater floor, Mars[J]. Journal of Geophysical Research: Planets, 2024, 129(1): e2023JE007989 doi: 10.1029/2023JE007989
    [108]
    PHUA Y Y, EHLMANN B L, SILJESTRÖM S, et al. Characterizing hydrated sulfates and altered phases in Jezero crater Fan and floor geologic units with SHERLOC on Mars 2020[J]. Journal of Geophysical Research: Planets, 2024, 129(7): e2023JE008251 doi: 10.1029/2023JE008251
    [109]
    MAYHEW L E, QUANTIN-NATAF C, SCHELLER E L, et al. The scientific value of collecting samples from the Jezero crater rim[C]//Proceedings of the 55th Lunar and Planetary Science Conference. Woodlands: Lunar and Planetary Institute, 2024
    [110]
    QUANTIN-NATAF C, ALWMARK S, CALEF F J, et al. The complex exhumation history of Jezero crater floor unit and its implication for mars sample return[J]. Journal of Geophysical Research: Planets, 2023, 128(6): e2022JE007628 doi: 10.1029/2022JE007628
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(2)

    Article Metrics

    Article Views(622) PDF Downloads(109) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return