Volume 45 Issue 2
Apr.  2025
Turn off MathJax
Article Contents
CHEN Wei, XIE Fei, GE Mingyu. X-ray Polarization Model and Observational Results of Magnetars (in Chinese). Chinese Journal of Space Science, 2025, 45(2): 588-600 doi: 10.11728/cjss2025.02.2024-0139
Citation: CHEN Wei, XIE Fei, GE Mingyu. X-ray Polarization Model and Observational Results of Magnetars (in Chinese). Chinese Journal of Space Science, 2025, 45(2): 588-600 doi: 10.11728/cjss2025.02.2024-0139

X-ray Polarization Model and Observational Results of Magnetars

doi: 10.11728/cjss2025.02.2024-0139 cstr: 32142.14.cjss.2024-0139
  • Received Date: 2024-10-28
  • Rev Recd Date: 2024-12-10
  • Available Online: 2025-02-14
  • Magnetars are a type of neutron star with extremely strong magnetic fields ranging from 1010~1011 T, which are significantly different from the properties of ordinary pulsars. They are generally associated with supernova remnants and exhibit strong activity, making them important objects for studying extreme astrophysical properties and corresponding to one type of Fast Radio Burst (FRB). The magnetic structure and the origin of the activity energy of magnetars have always been central issues in magnetar research, and thus, polarization observation information is crucial for understanding their nature. Since the launch of the Imaging X-ray Polarimetry Explorer (IXPE), in-depth observations have been conducted on four magnetars: 4U 0142+61, SGR 1806-20, 1RXS J170849.0-400910, and 1E 2259+586, marking a deepened study of their properties. This includes the verification and limitation of the magnetar polarization model. This article summarizes the observational results of these four magnetars and discusses the findings in relation to the main magnetar models, which are the rotating vector model, the resonant Compton model, and the vacuum resonance model.

     

  • loading
  • [1]
    KIM C M, KIM S P. Magnetars as laboratories for strong field QED[J]. AIP Conference Proceedings, 2024, 2874(1): 020013
    [2]
    KASPI V M, BELOBORODOV A M. Magnetars[J]. Annual Review of Astronomy and Astrophysics, 2017, 55: 261-301 doi: 10.1146/annurev-astro-081915-023329
    [3]
    HURLEY K. Soft gamma repeaters[J]. Advances in Space Research, 2011, 47(8): 1326-1331 doi: 10.1016/j.asr.2010.03.001
    [4]
    VAN PARADIJS J, TAAM R E, VAN DEN HEUVEL E P J. On the nature of the ‘anomalous’ 6-s X-ray pulsars[J]. Astronomy and Astrophysics, 1995, 299: L41
    [5]
    吴鑫基, 乔国俊, 徐仁新. 脉冲星物理[M]. 北京: 北京大学出版社, 2018

    WU Xinji, QIAO Guojun, XU Renxin. Pulsar Physics[M]. Beijing: Peking University Press, 2018
    [6]
    LEWIN W, VAN DER KLIS M. Compact Stellar X-Ray Sources[M]. Cambridge: Cambridge University Press, 2006
    [7]
    THOMPSON C, DUNCAN R C. The soft gamma repeaters as very strongly magnetized neutron stars. II. quiescent neutrino, X-ray, and Alfvén wave emission[J]. The Astrophysical Journal, 1996, 473(1): 322-342 doi: 10.1086/178147
    [8]
    OLAUSEN S A, KASPI V M. The McGill magnetar catalog[J]. The Astrophysical Journal Supplement Series, 2014, 212(1): 6 doi: 10.1088/0067-0049/212/1/6
    [9]
    GROUP M P. McGill online magnetar catalog[EB/OL]. (2020-11-17)[2024-10-25]. https://www.physics.mcgill.ca/~pulsar/magnetar/main.html
    [10]
    DIB R, KASPI V M. 16 yr of RXTE monitoring of five anomalous X-ray pulsars[J]. The Astrophysical Journal, 2014, 784(1): 37 doi: 10.1088/0004-637X/784/1/37
    [11]
    GÜVER T, GÖĞÜŞ E, ÖZEL F. A magnetar strength surface magnetic field for the slowly spinning down SGR 0418+5729[J]. Monthly Notices of the Royal Astronomical Society, 2011, 418(4): 2773-2778 doi: 10.1111/j.1365-2966.2011.19677.x
    [12]
    KUMAR H S, SAFI-HARB S. Variability of the high magnetic field X-Ray pulsar PSR J1846–0258 associated with the supernova remnant Kes 75 as revealed by the Chandra X-Ray Observatory[J]. The Astrophysical Journal, 2008, 678(1): L43-L46 doi: 10.1086/588284
    [13]
    KUIPER L, HERMSEN W. High-energy characteristics of the schizophrenic pulsar PSR J1846-0258 in Kes 75. Multi-year RXTE and INTEGRAL observations crossing the magnetar-like outburst[J]. Astronomy and Astrophysics, 2009, 501(3): 1031-1046 doi: 10.1051/0004-6361/200811580
    [14]
    ARCHIBALD R F, KASPI V M, TENDULKAR S P, et al. A magnetar-like outburst from a high-B radio pulsar[J]. The Astrophysical Journal Letters, 2016, 829(1): L21 doi: 10.3847/2041-8205/829/1/L21
    [15]
    BOCHENEK C D, RAVI V, BELOV K V, et al. A fast radio burst associated with a Galactic magnetar[J]. Nature, 2020, 587(7832): 59-62 doi: 10.1038/s41586-020-2872-x
    [16]
    The CHIME/FRB Collaboration. A bright millisecond-duration radio burst from a Galactic magnetar[J]. Nature, 2020, 587(7832): 54-58 doi: 10.1038/s41586-020-2863-y
    [17]
    LI C K, LIN L, XIONG S L, et al. HXMT identification of a non-thermal X-ray burst from SGR J1935+2154 and with FRB 200428[J]. Nature Astronomy, 2021, 5(4): 378-384 doi: 10.1038/s41550-021-01302-6
    [18]
    MEREGHETTI S, SAVCHENKO V, FERRIGNO C, et al. INTEGRAL discovery of a burst with associated radio emission from the magnetar SGR 1935+2154[J]. The Astrophysical Journal Letters, 2020, 898(2): L29 doi: 10.3847/2041-8213/aba2cf
    [19]
    RIDNAIA A, SVINKIN D, FREDERIKS D, et al. A peculiar hard X-ray counterpart of a Galactic fast radio burst[J]. Nature Astronomy, 2021, 5(4): 372-377 doi: 10.1038/s41550-020-01265-0
    [20]
    TAVANI M, CASENTINI C, URSI A, et al. An X-ray burst from a magnetar enlightening the mechanism of fast radio bursts[J]. Nature Astronomy, 2021, 5(4): 401-407 doi: 10.1038/s41550-020-01276-x
    [21]
    ZHONG S Q, DAI Z G, ZHANG H M, et al. On the Distance of SGR 1935+2154 Associated with FRB 200428 and Hosted in SNR G57.2+0.8[J]. The Astrophysical Journal Letters, 2020, 898(1): L5 doi: 10.3847/2041-8213/aba262
    [22]
    The CHIME/FRB Collaboration, ANDERSEN B C, BANDURA K, et al. Sub-second periodicity in a fast radio burst[J]. Nature, 2022, 607(7918): 256-259 doi: 10.1038/s41586-022-04841-8
    [23]
    PELLICIARI D, BERNARDI G, PILIA M, et al. The Northern Cross Fast Radio Burst project. III. The FRB-magnetar connection in a sample of nearby galaxies[J]. Astronomy and Astrophysics, 2023, 674: A223 doi: 10.1051/0004-6361/202346307
    [24]
    HU C P, NARITA T, ENOTO T, et al. Rapid spin changes around a magnetar fast radio burst[J]. Nature, 2024, 626(7999): 500-504 doi: 10.1038/s41586-023-07012-5
    [25]
    DESVIGNES G, WELTEVREDE P, GAO Y, et al. A freely precessing magnetar following an X-ray outburst[J]. Nature Astronomy, 2024, 8(5): 617-627 doi: 10.1038/s41550-024-02226-7
    [26]
    HARDING A K, LAI D. Physics of strongly magnetized neutron stars[J]. Reports on Progress in Physics, 2006, 69(9): 2631-2708 doi: 10.1088/0034-4885/69/9/R03
    [27]
    LAI D, HO W C G. Polarized X-ray emission from magnetized neutron stars: signature of strong-field vacuum polarization[J]. Physical Review Letters, 2003, 91(7): 071101 doi: 10.1103/PhysRevLett.91.071101
    [28]
    TAVERNA R, TUROLLA R. X-ray polarization from magnetar sources[J]. Galaxies, 2024, 12(1): 6 doi: 10.3390/galaxies12010006
    [29]
    DEININGER W D, KALINOWSKI W, MASCIARELLI J, et al. IXPE mission system concept and development status[C]//2019 IEEE Aerospace Conference. Big Sky: IEEE, 2019: 1-15
    [30]
    WEISSKOPF M C, SOFFITTA P, BALDINI L, et al. The imaging X-ray polarimetry explorer (IXPE): pre-launch[J]. Journal of Astronomical Telescopes, Instruments, and Systems, 2022, 8(2): 026002
    [31]
    SOFFITTA P, BALDINI L, BELLAZZINI R, et al. The instrument of the imaging x-ray polarimetry explorer[J]. The Astronomical Journal, 2021, 162(5): 208 doi: 10.3847/1538-3881/ac19b0
    [32]
    BALDINI L, BARBANERA M, BELLAZZINI R, et al. Design, construction, and test of the Gas Pixel Detectors for the IXPE mission[J]. Astroparticle Physics, 2021, 133: 102628 doi: 10.1016/j.astropartphys.2021.102628
    [33]
    MULERI F. Analysis of the data from photoelectric gas polarimeters[M]//BAMBI C, SANTANGELO A. Handbook of X-Ray and Gamma-Ray Astrophysics. Singapore: Springer, 2022: 1-23
    [34]
    XIE F, DI MARCO A, LA MONACA F, et al. Vela pulsar wind nebula X-rays are polarized to near the synchrotron limit[J]. Nature, 2022, 612(7941): 658-660 doi: 10.1038/s41586-022-05476-5
    [35]
    MARIN F, CHURAZOV E, KHABIBULLIN I, et al. X-ray polarization evidence for a 200-year-old flare of Sgr A[J]. Nature, 2023, 619(7968): 41-45
    [36]
    LIODAKIS I, MARSCHER A P, AGUDO I, et al. Polarized blazar X-rays imply particle acceleration in shocks[J]. Nature, 2022, 611(7937): 677-681 doi: 10.1038/s41586-022-05338-0
    [37]
    DOROSHENKO V, POUTANEN J, TSYGANKOV S S, et al. Determination of X-ray pulsar geometry with IXPE polarimetry[J]. Nature Astronomy, 2022, 6(12): 1433-1443 doi: 10.1038/s41550-022-01799-5
    [38]
    KRAWCZYNSKI H, MULERI F, DOVČIAK M, et al. Polarized X-rays constrain the disk-jet geometry in the black hole X-ray binary Cygnus X-1[J]. Science, 2022, 378(6620): 650-654 doi: 10.1126/science.add5399
    [39]
    MARRA L, BRIGITTE M, RODRIGUEZ CAVERO N, et al. IXPE observation confirms a high spin in the accreting black hole 4U 1957+115[J]. Astronomy and Astrophysics, 2024, 684: A95 doi: 10.1051/0004-6361/202348277
    [40]
    VELEDINA A, MULERI F, POUTANEN J, et al. Cygnus X-3 revealed as a Galactic ultraluminous X-ray source by IXPE[J]. Nature Astronomy, 2024, 8: 1031-1046 doi: 10.1038/s41550-024-02294-9
    [41]
    李红. 基于光电效应的天文X射线偏振测量方法及仪器研究[D]. 北京: 清华大学, 2016

    LI Hong. Study and Development of the Technique and Detector for Astronomical X-Ray Polarimetry Based on Photoelectric Effect[D]. Beijing: Tsinghua University, 2016
    [42]
    COSTA E, SOFFITTA P, BELLAZZINI R, et al. An efficient photoelectric X-ray polarimeter for the study of black holes and neutron stars[J]. Nature, 2001, 411(6838): 662-665 doi: 10.1038/35079508
    [43]
    LA MONACA F, XIE F, SOFFITTA P, et al. A possibility to extend the IXPE energy band[C]//Space Telescopes and Instrumentation 2022: Ultraviolet to Gamma Ray. Montréal: SPIE Astronomical Telescopes + Instrumentation, 2022: 121811D
    [44]
    GONZÁLEZ CANIULEF D, ZANE S, TAVERNA R, et al. Polarized thermal emission from X-ray dim isolated neutron stars: the case of RX J1856.5−3754[J]. Monthly Notices of the Royal Astronomical Society, 2016, 459(4): 3585-3595 doi: 10.1093/mnras/stw804
    [45]
    TAVERNA R, TUROLLA R, MULERI F, et al. Polarized X-rays from a magnetar[J]. Science, 2022, 378(6620): 646-650 doi: 10.1126/science.add0080
    [46]
    ZANE S, TAVERNA R, GONZÁLEZ–CANIULEF D, et al. A strong X-ray polarization signal from the magnetar 1RXS J170849.0-400910[J]. The Astrophysical Journal Letters, 2023, 944(2): L27 doi: 10.3847/2041-8213/acb703
    [47]
    TUROLLA R, TAVERNA R, ISRAEL G L, et al. IXPE and XMM-Newton observations of the soft gamma repeater SGR 1806–20[J]. The Astrophysical Journal, 2023, 954(1): 88 doi: 10.3847/1538-4357/aced05
    [48]
    HEYL J, TAVERNA R, TUROLLA R, et al. The detection of polarized X-ray emission from the magnetar 1E 2259+586[J]. Monthly Notices of the Royal Astronomical Society, 2024, 527(4): 12219-12231
    [49]
    TAVERNA R, MULERI F, TUROLLA R, et al. Probing magnetar magnetosphere through X-ray polarization measurements[J]. Monthly Notices of the Royal Astronomical Society, 2014, 438(2): 1686-1697 doi: 10.1093/mnras/stt2310
    [50]
    HEYL J S, SHAVIV N J. QED and the high polarization of the thermal radiation from neutron stars[J]. Physical Review D, 2002, 66(2): 023002 doi: 10.1103/PhysRevD.66.023002
    [51]
    RADHAKRISHNAN V, COOKE D J. Magnetic poles and the polarization structure of pulsar radiation[J]. Astrophysical Letters, 1969, 3: 225-229
    [52]
    THOMPSON C, LYUTIKOV M, KULKARNI S R. Electrodynamics of magnetars: implications for the persistent X-ray emission and spin-down of the soft gamma repeaters and anomalous X-ray pulsars[J]. The Astrophysical Journal, 2002, 574(1): 332-355 doi: 10.1086/340586
    [53]
    TONG H, WANG P F, WANG H G, et al. Rotating vector model for magnetars[J]. Monthly Notices of the Royal Astronomical Society, 2021, 502(1): 1549-1556 doi: 10.1093/mnras/stab108
    [54]
    TONG H. Large polar caps for twisted magnetosphere of magnetars[J]. Monthly Notices of the Royal Astronomical Society, 2019, 489(3): 3769-3777
    [55]
    SCHWARM F W, BALLHAUSEN R, FALKNER S, et al. Cyclotron resonant scattering feature simulations II. Description of the CRSF simulation process[J]. Astronomy :Times New Roman;">& Astrophysics, 2017, 601: A99
    [56]
    FOMIN P I, KHOLODOV R I. Resonance Compton scattering in an external magnetic field[J]. Journal of Experimental and Theoretical Physics, 2000, 90(2): 281-286 doi: 10.1134/1.559101
    [57]
    REA N, ZANE S, TUROLLA R, et al. Resonant cyclotron scattering in Magnetars’ emission[J]. The Astrophysical Journal, 2008, 686(2): 1245-1260 doi: 10.1086/591264
    [58]
    CAIAZZO I, GONZÁLEZ-CANIULEF D, HEYL J, et al. Probing magnetar emission mechanisms with X-ray spectropolarimetry[J]. Monthly Notices of the Royal Astronomical Society, 2021, 514(4): 5024-5034
    [59]
    MÉSZÁROS P. High-Energy Radiation from Magnetized Neutron Stars[M]. Chicago: University of Chicago Press, 1992
    [60]
    TAVERNA R, TUROLLA R, ZANE S, et al. Polarized emission from strongly magnetized sources[J]. Proceedings of the International Astronomical Union, 2020, 16(S363): 276-279 doi: 10.1017/S174392132200028X
    [61]
    LAI D, HO W C G. Resonant conversion of photon modes due to vacuum polarization in a magnetized plasma: implications for X-ray emission from magnetars[J]. The Astrophysical Journal, 2002, 566(1): 373-377 doi: 10.1086/338074
    [62]
    LAI D. IXPE detection of polarized X-rays from magnetars and photon mode conversion at QED vacuum resonance[J]. Proceedings of the National Academy of Sciences, 2023, 120(17): e2216534120 doi: 10.1073/pnas.2216534120
    [63]
    KELLY R M E, ZANE S, TUROLLA R, et al. X-ray polarization in magnetar atmospheres – effects of mode conversion[J]. Monthly Notices of the Royal Astronomical Society, 2024, 528(3): 3927-3940 doi: 10.1093/mnras/stae159
    [64]
    WANG Z X, CHAKRABARTY D, KAPLAN D L. A debris disk around an isolated young neutron star[J]. Nature, 2006, 440(7085): 772-775 doi: 10.1038/nature04669
    [65]
    ERTAN Ü, ERKUT M H, EKŞI K Y, et al. The anomalous X-ray pulsar 4U 0142+61: a neutron star with a gaseous fallback disk[J]. The Astrophysical Journal, 2007, 657(1): 441 doi: 10.1086/510303
    [66]
    TONG H, WANG W, LIU X W, et al. Rotational evolution of magnetars in the presence of a fallback disk[J]. The Astrophysical Journal, 2016, 833(2): 265 doi: 10.3847/1538-4357/833/2/265
    [67]
    GRIMANI C. Clues from 4U 0142+61 on supernova fallback disc formation and precession[J]. Monthly Notices of the Royal Astronomical Society, 2021, 507(1): 261-266 doi: 10.1093/mnras/stab2078
    [68]
    KASPI V M, LACKEY J R, CHAKRABARTY D. A glitch in an anomalous X-ray pulsar[J]. The Astrophysical Journal, 2000, 537(1): L31-L34 doi: 10.1086/312758
    [69]
    DALL’OSSO S, ISRAEL G L, STELLA L, et al. The glitches of the anomalous X-ray pulsar 1RXS J170849.0-400910[J]. The Astrophysical Journal, 2003, 599(1): 485-497 doi: 10.1086/379213
    [70]
    SCHOLZ P, ARCHIBALD R F, KASPI V M, et al. On the X-ray variability of magnetar 1RXS J170849.0−400910[J]. The Astrophysical Journal, 2014, 783(2): 99 doi: 10.1088/0004-637X/783/2/99
    [71]
    VAN ADELSBERG M, PERNA R. Soft X-ray polarization in thermal magnetar emission[J]. Monthly Notices of the Royal Astronomical Society, 2009, 399(3): 1523-1533 doi: 10.1111/j.1365-2966.2009.15374.x
    [72]
    WOODS P M, KOUVELIOTOU C, FINGER M H, et al. The prelude to and aftermath of the giant flare of 2004 December 27: persistent and pulsed X-ray properties of SGR 1806-20 from 1993 to 2005[J]. The Astrophysical Journal, 2007, 654(1): 470-486 doi: 10.1086/507459
    [73]
    HURLEY K, BOGGS S E, SMITH D M, et al. An exceptionally bright flare from SGR 1806-20 and the origins of short-duration γ-ray bursts[J]. Nature, 2005, 434(7037): 1098-1103 doi: 10.1038/nature03519
    [74]
    FEROCI M, FRONTERA F, COSTA E, et al. A giant outburst from SGR 1900+14 observed with the BeppoSAX Gamma-ray burst monitor[J]. The Astrophysical Journal, 1999, 515(1): L9-L12 doi: 10.1086/311964
    [75]
    MAZETS E P, GOLENETSKII S V, IL'INSKII V N, et al. Observations of a flaring X-ray pulsar in Dorado[J]. Nature, 1979, 282(5739): 587-589 doi: 10.1038/282587a0
    [76]
    CHAND V, JOSHI J C, GUPTA R, et al. Magnetar giant flare originating from GRB 200415A: transient GeV emission, time-resolved Ep–Liso correlation and implications[J]. Research in Astronomy and Astrophysics, 2021, 21(9): 236 doi: 10.1088/1674-4527/21/9/236
    [77]
    MINAEV P Y, POZANENKO A S, GREBENEV S A, et al. GRB 231115A—a magnetar giant flare in the M82 galaxy[J]. Astronomy Letters, 2024, 50(1): 1-24 doi: 10.1134/S1063773724600152
    [78]
    KASPI V M, GAVRIIL F P, WOODS P M, et al. A major soft gamma repeater-like outburst and rotation glitch in the no-longer-so-anomalous X-ray pulsar 1E 2259+586[J]. The Astrophysical Journal, 2003, 588(2): L93-L96 doi: 10.1086/375683
    [79]
    ARCHIBALD R F, KASPI V M, NG C Y, et al. An anti-glitch in a magnetar[J]. Nature, 2013, 497(7451): 591-593 doi: 10.1038/nature12159
    [80]
    PIZZOCARO D, TIENGO A, MEREGHETTI S, et al. Detailed X-ray spectroscopy of the magnetar 1E 2259+586[J]. Astronomy and Astrophysics, 2019, 626: A39 doi: 10.1051/0004-6361/201834784
    [81]
    PENG H L, GE M Y, WENG S S, et al. Polarized X-rays detected from the anomalous X-ray pulsar 1E 2259+586[J]. The Astrophysical Journal, 2024, 961(1): 106 doi: 10.3847/1538-4357/ad1512
    [82]
    TIENGO A, ESPOSITO P, MEREGHETTI S, et al. A variable absorption feature in the X-ray spectrum of a magnetar[J]. Nature, 2013, 500(7462): 312-314 doi: 10.1038/nature12386
    [83]
    ZHANG S N, SANTANGELO A, FEROCI M, et al. The enhanced X-ray Timing and Polarimetry mission—eXTP[J]. Science China Physics, Mechanics & Astronomy, 2019, 62(2): 29502
    [84]
    SANTANGELO A, ZANE S, FENG H, et al. Physics and astrophysics of strong magnetic field systems with eXTP[J]. Science China Physics, Mechanics & Astronomy, 2019, 62(2): 29505
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(2)

    Article Metrics

    Article Views(430) PDF Downloads(47) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return