Volume 45 Issue 2
Apr.  2025
Turn off MathJax
Article Contents
CAO Jialu, LANG Xiaoyu, LIU Xiangdong, CHEN Zhen. Optimal Hybrid Attitude Control of Spacecraft in Elliptical Orbit (in Chinese). Chinese Journal of Space Science, 2025, 45(2): 579-587 doi: 10.11728/cjss2025.02.2024-0145
Citation: CAO Jialu, LANG Xiaoyu, LIU Xiangdong, CHEN Zhen. Optimal Hybrid Attitude Control of Spacecraft in Elliptical Orbit (in Chinese). Chinese Journal of Space Science, 2025, 45(2): 579-587 doi: 10.11728/cjss2025.02.2024-0145

Optimal Hybrid Attitude Control of Spacecraft in Elliptical Orbit

doi: 10.11728/cjss2025.02.2024-0145 cstr: 32142.14.cjss.2024-0145
  • Received Date: 2024-10-30
  • Rev Recd Date: 2025-02-10
  • Available Online: 2025-03-19
  • During the spacecraft attitude control, pure magnetic control suffers from under actuation and limited torque authority, restricting its effectiveness, particularly in elliptical orbits where the magnetic field does not vary as regularly as it does in circular orbits. This paper explores the integration of an impulse thruster alongside a magnetic torque generator, employing a combination of continuous and discrete control moments to enhance attitude maneuverability and stability. By leveraging the complementary characteristics of both control methods, a more effective attitude control strategy can be achieved. Based on this hybrid torque application, a Linear Quadratic Regulator (LQR)-based attitude control strategy is developed for spacecraft operating in elliptical orbits. The proposed control framework dynamically determines the timing and magnitude of discrete impulses to compensate for the deficiencies of pure magnetic control. By analyzing the relationship between magnetic control effectiveness and variations in the eccentricity of elliptical orbit, we identify the point at which pure magnetic control exhibits its weakest capability. At this critical moment, an appropriately impulse is applied, compensating for the system’s required control gain through discrete thrust pulses. This method ensures that the spacecraft maintains the desired attitude control effects with improved accuracy and robustness. Furthermore, the proposed hybrid control approach is evaluated through numerical simulations under given orbital and disturbance conditions. Simulation results demonstrate that the proposed hybrid LQR control method significantly enhances attitude control performance compared to purely magnetic control strategies. The introduction of pulse thrusters effectively reduces the regulation time and improves the transient performance of the system. These findings highlight the effectiveness of the hybrid control approach in addressing the challenges of spacecraft attitude regulation in elliptical orbits and provide valuable insights into advanced control methodologies for spacecraft operating.

     

  • loading
  • [1]
    LOVERA M, ASTOLFI A. Global magnetic attitude control of spacecraft in the presence of gravity gradient[J]. IEEE Transactions on Aerospace and Electronic Systems, 2006, 42(3): 796-805 doi: 10.1109/TAES.2006.248214
    [2]
    张刘, 王绍举, 金光. 小卫星三轴稳定鲁棒自适应控制器设计[J]. 空间科学学报, 2009, 29(1): 29-33 doi: 10.11728/cjss2009.01.029

    ZHANG Liu, WANG Shaoju, JIN Guang. Design of three-axis stable robust adaptive attitude control of microsatellites[J]. Chinese Journal of Space Science, 2009, 29(1): 29-33 doi: 10.11728/cjss2009.01.029
    [3]
    WISNIEWSKI R. Linear time-varying approach to satellite attitude control using only electromagnetic actuation[J]. Journal of Guidance, Control, and Dynamics, 2000, 23(4): 640-647 doi: 10.2514/2.4609
    [4]
    LOVERA M, ASTOLFI A. Spacecraft attitude control using magnetic actuators[J]. Automatica, 2004, 40(8): 1405-1414 doi: 10.1016/j.automatica.2004.02.022
    [5]
    SILANI E, LOVERA M. Magnetic spacecraft attitude control: a survey and some new results[J]. Control Engineering Practice, 2005, 13(3): 357-371 doi: 10.1016/j.conengprac.2003.12.017
    [6]
    ZHOU B. Global stabilization of periodic linear systems by bounded controls with applications to spacecraft magnetic attitude control[J]. Automatica, 2015, 60: 145-154 doi: 10.1016/j.automatica.2015.07.003
    [7]
    CHEN X J, STEYN W. Robust combined eigenaxis slew manoeuvre[C]//Proceedings of 1999 Guidance, Navigation, and Control Conference and Exhibit. Portland: AIAA, 1999: 521-529
    [8]
    HALL C D, TSIOTRAS P, SHEN H J. Tracking rigid body motion using thrusters and momentum wheels[J]. The Journal of the Astronautical Sciences, 2002, 50(3): 311-323 doi: 10.1007/BF03546255
    [9]
    WISNIEWSKI R, MARKLEY F L. Optimal magnetic attitude control[J]. IFAC Proceedings Volumes, 1999, 32(2): 7991-7996 doi: 10.1016/S1474-6670(17)57363-2
    [10]
    PSIAKI M L. Magnetic torquer attitude control via asymptotic periodic linear quadratic regulation[J]. Journal of Guidance, Control, and Dynamics, 2001, 24(2): 386-394 doi: 10.2514/2.4723
    [11]
    WOOD M, CHEN W H, FERTIN D. Model predictive control of low earth orbiting spacecraft with magneto-torquers[C]//Proceedings of 2006 IEEE Conference on Computer Aided Control System Design, 2006 IEEE International Conference on Control Applications, 2006 IEEE International Symposium on Intelligent Control. Munich: IEEE, 2006: 2908-2913
    [12]
    孙兆伟, 林晓辉, 曹喜滨. 小卫星姿态大角度机动联合控制算法[J]. 哈尔滨工业大学学报, 2003, 35(6): 663-667,670 doi: 10.3321/j.issn:0367-6234.2003.06.007

    SUN Zhaowei, LIN Xiaohui, CAO Xibin. Combined control algorithm for large angle maneuver of small satellite[J]. Journal of Harbin Institute of Technology, 2003, 35(6): 663-667,670 doi: 10.3321/j.issn:0367-6234.2003.06.007
    [13]
    孙兆伟, 杨旭, 杨涤. 小卫星磁力矩器与反作用飞轮联合控制算法研究[J]. 控制理论与应用, 2002, 19(2): 173-177 doi: 10.3969/j.issn.1000-8152.2002.02.005

    SUN Zhaowei, YANG Xu, YANG Di. The combined control algorithm for magnetorquer and reaction wheel of small satellite[J]. Control Theory :Times New Roman;">& Applications, 2002, 19(2): 173-177 doi: 10.3969/j.issn.1000-8152.2002.02.005
    [14]
    PULECCHI T, LOVERA M. Attitude control of spacecraft with partially magnetic actuation[J]. IFAC Proceedings Volumes, 2007, 40(7): 609-614 doi: 10.3182/20070625-5-FR-2916.00104
    [15]
    SOBIESIAK L, DAMAREN C. Hybrid periodic differential element control using the geomagnetic Lorentz force[C]//Proceedings of AIAA/AAS Astrodynamics Specialist Conference. Minneapolis: AIAA, 2012: 4584
    [16]
    SOBIESIAK L A, DAMAREN C J. Optimal continuous/impulsive control for Lorentz-augmented spacecraft formations[J]. Journal of Guidance, Control, and Dynamics, 2015, 38(1): 151-157 doi: 10.2514/1.G000334
    [17]
    VATANKHAHGHADIM B, DAMAREN C J. Optimal combination of magnetic attitude control with impulsive thrusting[J]. Journal of Guidance, Control, and Dynamics, 2016, 39(10): 2391-2398 doi: 10.2514/1.G001664
    [18]
    PETERSEN C D, LEVE F, FLYNN M, et al. Recovering linear controllability of an underactuated spacecraft by exploiting solar radiation pressure[J]. Journal of Guidance, Control, and Dynamics, 2016, 39(4): 826-837 doi: 10.2514/1.G001446
    [19]
    VATANKHAHGHADIM B, DAMAREN C J. Optimal hybrid magnetic attitude control: disturbance accommodation and impulse timing[J]. IEEE Transactions on Control Systems Technology, 2017, 25(4): 1512-1520 doi: 10.1109/TCST.2016.2604739
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(1)

    Article Metrics

    Article Views(200) PDF Downloads(21) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return