| Citation: | SUN Boao, DOU Shencheng, WANG Xiaoqing, YANG Shuang, YANG Chao, LIU Xuefeng, ZHENG Fu. Design and Calibration of High-resolution Low-noise Micro Flow Sensors for Cold Gas Thrusters (in Chinese). Chinese Journal of Space Science, 2025, 45(2): 601-611 doi: 10.11728/cjss2025.02.2024-0147 |
| [1] |
杨超, 贺建武, 康琦, 等. 亚微牛级推力测量系统设计及实验研究[J]. 中国光学, 2019, 12(3): 526-534 doi: 10.3788/co.20191203.0526
YANG Chao, HE Jianwu, KANG Qi, et al. Design and experimental study of sub-micro-scale thrust measurement systems[J]. Chinese Optics, 2019, 12(3): 526-534 doi: 10.3788/co.20191203.0526
|
| [2] |
于达仁, 牛翔, 王泰卜, 等. 面向空间引力波探测任务的微推进技术研究进展[J]. 中山大学学报(自然科学版), 2021, 60(1/2): 194-212
YU Daren, NIU Xiang, WANG Taibu, et al. The developments of micro propulsion technology based on space gravitational wave detection task[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2021, 60(1/2): 194-212
|
| [3] |
LIU H, NIU X, ZENG M, et al. Review of micro propulsion technology for space gravitational waves detection[J]. Acta Astronautica, 2022, 193: 496-510 doi: 10.1016/j.actaastro.2022.01.043
|
| [4] |
张锦绣, 陶文舰, 连晓斌, 等. 空间引力波探测无拖曳技术现状与趋势[J]. 国防科技大学学报, 2024, 46(2): 1-17 doi: 10.11887/j.cn.202402001
ZHANG Jinxiu, TAO Wenjian, LIAN Xiaobin, et al. Current status and trends of drag-free technology for space-based gravitational wave detection[J]. Journal of National University of Defense Technology, 2024, 46(2): 1-17 doi: 10.11887/j.cn.202402001
|
| [5] |
MATTICARI G, NOCI G, SICILIANO P, et al. Cold gas micro propulsion prototype for very fine spacecraft attitude/position control[C]//42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Sacramento: AIAA, 2006: 4872
|
| [6] |
NOCI G, MATTICARI G, SICILIANO P, et al. Cold gas micro propulsion system for scientific satellite fine pointing: review of development and qualification activities at Thales Alenia Space Italia[C]//45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Denver: AIAA, 2009: 5127-5139
|
| [7] |
吴岳良, 胡文瑞, 王建宇, 等. 空间引力波探测综述与拟解决的科学问题[J]. 空间科学学报, 2023, 43(4): 589-599 doi: 10.11728/cjss2023.04.yg08
WU Yuliang, HU Wenrui, WANG Jianyu, et al. Review and scientific objectives of spaceborne gravitational wave detection missions[J]. Chinese Journal of Space Science, 2023, 43(4): 589-599 doi: 10.11728/cjss2023.04.yg08
|
| [8] |
LISA Consortium. LISA: laser interferometer space antenna—a proposal in response to the ESA call for L3 mission concepts[EB/OL]. (2017-01-20)[2019-12-30]. https://www.cosmos.esa.int/documents/678316/1700384/LISA_L3_20170120+-+Submitted.pdf/5b036a72-ed33-dbad-871d-f16ed282723d
|
| [9] |
罗子人, 张敏, 靳刚, 等. 中国空间引力波探测“太极计划”及“太极1号”在轨测试[J]. 深空探测学报, 2020, 7(1): 3-10
LUO Ziren, ZHANG Min, JIN Gang, et al. Introduction of Chinese space-borne gravitational wave detection program “Taiji” and “Taiji-1” satellite mission[J]. Journal of Deep Space Exploration, 2020, 7(1): 3-10
|
| [10] |
KUO J T W, YU L, MENG E. Micromachined thermal flow sensors — a review[J]. Micromachines, 2012, 3(3): 550-573 doi: 10.3390/mi3030550
|
| [11] |
侯智昊, 刘旭辉, 龙军, 等. 一种基于铂电阻的硅基MEMS热式流量传感器芯片研制[J]. 微处理机, 2023, 44(3): 11-14 doi: 10.3969/j.issn.1002-2279.2023.03.003
HOU Zhihao, LIU Xuhui, LONG Jun, et al. Development of a silicon-based MEMS thermal flow sensor chip based on platinum resistance[J]. Microprocessors, 2023, 44(3): 11-14 doi: 10.3969/j.issn.1002-2279.2023.03.003
|
| [12] |
QIAO J P, CHEN J Y, JIAO B B, et al. A highly sensitive dual-mode thermal flow sensor based on calorimetric mode[J]. IEEE Sensors Journal, 2024, 24(2): 1245-1254 doi: 10.1109/JSEN.2023.3336293
|