| Citation: | FANG Hanmin, HUANG Wenlong, WANG Zihan. Long-time Simulation of Stiff Chemical Kinetics Using Conservation-constrained Physics-informed Neural Network (in Chinese). Chinese Journal of Space Science, 2025, 45(2): 277-287 doi: 10.11728/cjss2025.02.2024-0149 |
| [1] |
DROZDOV A Y, SHPRITS Y Y, USANOVA M E, et al. EMIC wave parameterization in the long-term VERB code simulation[J]. Journal of Geophysical Research: Space Physics, 2017, 122(8): 8488-8501 doi: 10.1002/2017JA024389
|
| [2] |
QIAN Y, LEUNG L R. A long-term regional simulation and observations of the hydroclimate in China[J]. Journal of Geophysical Research: Atmospheres, 2007, 112(D14): D14104
|
| [3] |
DE FLORIO M, SCHIASSI E, FURFARO R. Physics-informed neural networks and functional interpolation for stiff chemical kinetics[J]. Chaos: An Interdisciplinary Journal of Nonlinear Science, 2022, 32(6): 063107 doi: 10.1063/5.0086649
|
| [4] |
HUANG Y L, SEINFELD J H. A neural network-assisted Euler integrator for stiff kinetics in atmospheric chemistry[J]. Environmental Science :Times New Roman;">& Technology, 2022, 56(7): 4676-4685
|
| [5] |
WU Z Y, LI M J, HE C, et al. Physics-informed learning of chemical reactor systems using decoupling-coupling training framework[J]. AIChE Journal, 2024, 70(7): e18436 doi: 10.1002/aic.18436
|
| [6] |
CHEN W B, WANG X M, YAN Y, et al. A second order BDF numerical scheme with variable steps for the Cahn--Hilliard equation[J]. SIAM Journal on Numerical Analysis, 2019, 57(1): 495-525
|
| [7] |
陈丽容, 刘德贵. 求解刚性常微分方程的并行Rosenbrock方法[J]. 计算数学, 1998, 20(3): 251-260 doi: 10.12286/jssx.1998.3.251
CHEN Lirong, LIU Degui. Parallel rosenbrock methods for stiff ordinary differential equations[J]. Mathematica Numerica Sinica, 1998, 20(3): 251-260 doi: 10.12286/jssx.1998.3.251
|
| [8] |
RAISSI M, PERDIKARIS P, KARNIADAKIS G E. Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations[J]. Journal of Computational Physics, 2019, 378: 686-707 doi: 10.1016/j.jcp.2018.10.045
|
| [9] |
LU L, MENG X H, MAO Z P, et al. DeepXDE: a deep learning library for solving differential equations[J]. SIAM Review, 2021, 63(1): 208-228 doi: 10.1137/19M1274067
|
| [10] |
LIU G R, GU Y T. An Introduction to Meshfree Methods and Their Programming[M]. Dordrecht: Springer, 2005
|
| [11] |
ZHONG L L, WU B Y, WANG Y F. Low-temperature plasma simulation based on physics-informed neural networks: frameworks and preliminary applications[J]. Physics of Fluids, 2022, 34(8): 087116 doi: 10.1063/5.0106506
|
| [12] |
BATY H, VIGON V. Modelling solar coronal magnetic fields with physics-informed neural networks[J]. Monthly Notices of the Royal Astronomical Society, 2024, 527(2): 2575-2584
|
| [13] |
MA J Y, FU H Y, HUBA J D, et al. A novel ionospheric inversion model: PINN-SAMI3 (physics informed neural network based on SAMI3)[J]. Space Weather, 2024, 22(4): e2023SW003823 doi: 10.1029/2023SW003823
|
| [14] |
DAHLBÜDDING D, MOLAVERDIKHANI K, ERCOLANO B, et al. Approximating Rayleigh scattering in exoplanetary atmospheres using physics-informed neural networks[J]. Monthly Notices of the Royal Astronomical Society, 2024, 533(3): 3475-3483 doi: 10.1093/mnras/stae1872
|
| [15] |
LIVERMORE P W, WU L Y, CHEN L W, et al. Reconstructions of Jupiter’s magnetic field using physics-informed neural networks[J]. Monthly Notices of the Royal Astronomical Society, 2024, 533(4): 4058-4067 doi: 10.1093/mnras/stae1928
|
| [16] |
WANG S F, TENG Y J, PERDIKARIS P. Understanding and mitigating gradient flow pathologies in physics-informed neural networks[J]. SIAM Journal on Scientific Computing, 2021, 43(5): A3055-A3081 doi: 10.1137/20M1318043
|
| [17] |
JI W Q, QIU W L, SHI Z Y, et al. Stiff-PINN: physics-informed neural network for stiff chemical kinetics[J]. The Journal of Physical Chemistry A, 2021, 125(36): 8098-8106 doi: 10.1021/acs.jpca.1c05102
|
| [18] |
WENG Y T, ZHOU D Z. Multiscale physics-informed neural networks for stiff chemical kinetics[J]. The Journal of Physical Chemistry A, 2022, 126(45): 8534-8543 doi: 10.1021/acs.jpca.2c06513
|
| [19] |
WANG S F, PERDIKARIS P. Long-time integration of parametric evolution equations with physics-informed deeponets[J]. Journal of Computational Physics, 2023, 475: 111855 doi: 10.1016/j.jcp.2022.111855
|
| [20] |
韦昌, 樊昱晨, 周永清, 等. 基于龙格库塔法的多输出物理信息神经网络模型[J]. 力学学报, 2023, 55(10): 2405-2416 doi: 10.6052/0459-1879-23-299
WEI Chang, FAN Yuchen, ZHOU Yongqing, et al. Multi-output physics-informed neural networks model based on the Runge-Kutta method[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(10): 2405-2416 doi: 10.6052/0459-1879-23-299
|
| [21] |
HUANG Q M, MA J X, XU Z. Mass-preserving Spatio-temporal adaptive PINN for Cahn-Hilliard equations with strong nonlinearity and singularity[OL]. arXiv preprint arXiv: 2404.18054, 2024
|
| [22] |
宋家豪, 曹文博, 张伟伟. FD-PINN: 频域物理信息神经网络[J]. 力学学报, 2023, 55(5): 1195-1205 doi: 10.6052/0459-1879-23-169
SONG Jiahao, CAO Wenbo, ZHANG Weiwei. FD-PINN: frequency domain physics-informed neural network[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(5): 1195-1205 doi: 10.6052/0459-1879-23-169
|
| [23] |
CHEN Z, LIU Y, SUN H. Physics-informed learning of governing equations from scarce data[J]. Nature Communications, 2021, 12(1): 6136 doi: 10.1038/s41467-021-26434-1
|
| [24] |
SIVAMOHAN S, SRIDHAR S S, KRISHNAVENI S. An effective recurrent neural network (RNN) based intrusion detection via bi-directional long short-term memory[C] //Proceedings of 2021 International Conference on Intelligent Technologies (CONIT). Hubli: IEEE, 2021: 1-5
|
| [25] |
WU K L, XIU D. Data-driven deep learning of partial differential equations in modal space[J]. Journal of Computational Physics, 2020, 408: 109307 doi: 10.1016/j.jcp.2020.109307
|
| [26] |
BRANDSTETTER J, WORRALL D E, WELLING M. Message passing neural PDE solvers[C]//Proceedings of the Tenth International Conference on Learning Representations. ICLR, 2022
|
| [27] |
JAGTAP A D, KHARAZMI E, KARNIADAKIS G E. Conservative physics-informed neural networks on discrete domains for conservation laws: applications to forward and inverse problems[J]. Computer Methods in Applied Mechanics and Engineering, 2020, 365: 113028 doi: 10.1016/j.cma.2020.113028
|
| [28] |
LIN S N, CHEN Y. A two-stage physics-informed neural network method based on conserved quantities and applications in localized wave solutions[J]. Journal of Computational Physics, 2022, 457: 111053 doi: 10.1016/j.jcp.2022.111053
|
| [29] |
李道伦, 沈路航, 查文舒, 等. 基于神经算子与类物理信息神经网络智能求解新进展[J]. 力学学报, 2024, 56(4): 875-889 doi: 10.6052/0459-1879-23-407
LI Daolun, SHEN Luhang, ZHA Wenshu, et al. New progress in intelligent solution of neural operators and physics-informed-based methods[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(4): 875-889 doi: 10.6052/0459-1879-23-407
|
| [30] |
MENG X H, LI Z, ZHANG D K, et al. PPINN: parareal physics-informed neural network for time-dependent PDEs[J]. Computer Methods in Applied Mechanics and Engineering, 2020, 370: 113250 doi: 10.1016/j.cma.2020.113250
|
| [31] |
ISHIGURO S, USAMI S, HORIUCHI R, et al. Multi-scale simulation for plasma science[J]. Journal of Physics: Conference Series, 2010, 257(1): 012026
|
| [32] |
AKINSOLA V O, OKE E O, AMAO F A, et al. Numerical solutions of robertson chemical kinetic equation using a modified semi implicit extrapolation method and Runge-Kutta method of order four[J]. Adeleke University Journal of Science, 2023, 2(1): 22-33
|
| [33] |
GUO J W, YAO Y Z, WANG H, et al. Pre-training strategy for solving evolution equations based on physics-informed neural networks[J]. Journal of Computational Physics, 2023, 489: 112258 doi: 10.1016/j.jcp.2023.112258
|
| [34] |
潘小果, 王凯, 邓维鑫. 基于NTK理论和改进时间因果的物理信息神经网络加速收敛算法[J]. 力学学报, 2024, 56(7): 1943-1958 doi: 10.6052/0459-1879-24-087
PAN Xiaoguo, WANG Kai, DENG Weixin. Accelerating convergence algorithm for physics-informed neural networks based on NTK theory and modified causality[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(7): 1943-1958 doi: 10.6052/0459-1879-24-087
|
| [35] |
KINGMA D P, BA J. Adam: a method for stochastic optimization[OL]. arXiv preprint arXiv: 1412.6980, 2014
|
| [36] |
BYRD R H, LU P H, NOCEDAL J, et al. A limited memory algorithm for bound constrained optimization[J]. SIAM Journal on Scientific Computing, 1995, 16(5): 1190-1208 doi: 10.1137/0916069
|