| Citation: | GU Yaya, YANG Yazhou, LIU Jianzhong, ZHANG Li. Photometric Analysis of Lunar Regolith Based on the Bidirectional Reflectance Data of Apollo Samples (in Chinese). Chinese Journal of Space Science, 2025, 45(2): 328-339 doi: 10.11728/cjss2025.02.2024-0153 |
| [1] |
SHKURATOV Y, KAYDASH V, KOROKHIN V, et al. Optical measurements of the moon as a tool to study its surface[J]. Planetary and Space Science, 2011, 59(13): 1326-1371 doi: 10.1016/j.pss.2011.06.011
|
| [2] |
SANCHEZ J A, REDDY V, NATHUES A, et al. Phase reddening on near-Earth asteroids: implications for mineralogical analysis, space weathering and taxonomic classification[J]. Icarus, 2012, 220(1): 36-50 doi: 10.1016/j.icarus.2012.04.008
|
| [3] |
HAPKE B. Theory of Reflectance and Emittance Spectroscopy[M]. Cambridge: Cambridge University Press, 2012
|
| [4] |
SHEPARD M K. Introduction to Planetary Photometry[M]. Cambridge: Cambridge University Press, 2017
|
| [5] |
HAPKE B, DENEVI B, SATO H, et al. The wavelength dependence of the lunar phase curve as seen by the Lunar Reconnaissance Orbiter wide‐angle camera[J]. Journal of Geophysical Research: Planets, 2012, 117(E12): E00H15
|
| [6] |
SATO H, ROBINSON M S, HAPKE B, et al. Resolved Hapke parameter maps of the moon[J]. Journal of Geophysical Research: Planets, 2014, 119(8): 1775-1805 doi: 10.1002/2013JE004580
|
| [7] |
JIN W D, ZHANG H, YUAN Y, et al. In situ optical measurements of Chang’E-3 landing site in Mare Imbrium: 2. Photometric properties of the regolith[J]. Geophysical Research Letters, 2015, 42(20): 8312-8319 doi: 10.1002/2015GL065789
|
| [8] |
JIANG T, HU X Y, ZHANG H, et al. In situ lunar phase curves measured by Chang’E-4 in the Von Karman Crater, South Pole-Aitken basin[J]. Astronomy :Times New Roman;">& Astrophysics, 2021, 646: A2
|
| [9] |
LI S, MILLIKEN R E. Estimating the modal mineralogy of eucrite and diogenite meteorites using visible-near infrared reflectance spectroscopy[J]. Meteoritics :Times New Roman;">& Planetary Science, 2015, 50(11): 1821-1850
|
| [10] |
YOKOTA Y, MATSUNAGA T, OHTAKE M, et al. Lunar photometric properties at wavelengths 0.5–1.6 μm acquired by SELENE Spectral Profiler and their dependency on local albedo and latitudinal zones[J]. Icarus, 2011, 215(2): 639-660 doi: 10.1016/j.icarus.2011.07.028
|
| [11] |
WU Y Z, BESSE S, LI J Y, et al. Photometric correction and in-flight calibration of Chang’ E-1 Interference Imaging Spectrometer (IIM) data[J]. Icarus, 2013, 222(1): 283-295 doi: 10.1016/j.icarus.2012.11.010
|
| [12] |
HAPKE B. Bidirectional reflectance spectroscopy: 1. theory[J]. Journal of Geophysical Research: Solid Earth, 1981, 86(B4): 3039-3054 doi: 10.1029/JB086iB04p03039
|
| [13] |
HAPKE B, WELLS E. Bidirectional reflectance spectroscopy: 2. experiments and observations[J]. Journal of Geophysical Research: Solid Earth, 1981, 86(B4): 3055-3060 doi: 10.1029/JB086iB04p03055
|
| [14] |
HAPKE B. Bidirectional reflectance spectroscopy: 3. correction for macroscopic roughness[J]. Icarus, 1984, 59(1): 41-59 doi: 10.1016/0019-1035(84)90054-X
|
| [15] |
HAPKE B. Bidirectional reflectance spectroscopy: 4. the extinction coefficient and the opposition effect[J]. Icarus, 1986, 67(2): 264-280 doi: 10.1016/0019-1035(86)90108-9
|
| [16] |
HAPKE B. Bidirectional reflectance spectroscopy: 5. the coherent backscatter opposition effect and anisotropic scattering[J]. Icarus, 2002, 157(2): 523-534 doi: 10.1006/icar.2002.6853
|
| [17] |
HAPKE B. Bidirectional reflectance spectroscopy: 6. effects of porosity[J]. Icarus, 2008, 195(2): 918-926 doi: 10.1016/j.icarus.2008.01.003
|
| [18] |
HAPKE B. Bidirectional reflectance spectroscopy 7: the single particle phase function hockey stick relation[J]. Icarus, 2012, 221(2): 1079-1083 doi: 10.1016/j.icarus.2012.10.022
|
| [19] |
LI S, LI L. Radiative transfer modeling for quantifying lunar surface minerals, particle size, and submicroscopic metallic Fe[J]. Journal of Geophysical Research, 2011, 116(E9): E9001
|
| [20] |
YANG Y Z, LI S, MILLIKEN R E, et al. Phase functions of typical lunar surface minerals derived for the Hapke model and implications for visible to near-infrared spectral unmixing[J]. Journal of Geophysical Research: Planets, 2019, 124(1): 31-60 doi: 10.1029/2018JE005713
|
| [21] |
MUSTARD J F, PIETERS C M. Photometric phase functions of common geologic minerals and applications to quantitative analysis of mineral mixture reflectance spectra[J]. Journal of Geophysical Research: Solid Earth, 1989, 94(B10): 13619-13634 doi: 10.1029/JB094iB10p13619
|
| [22] |
LUCEY P G. Model near-infrared optical constants of olivine and pyroxene as a function of iron content[J]. Journal of Geophysical Research: Planets, 1998, 103(E1): 1703-1713 doi: 10.1029/97JE03145
|
| [23] |
欧阳自远. 月球科学概论[M]. 北京: 中国宇航出版社, 2005
OUYANG Ziyuan. Introduction to Lunar Science[M]. Beijing: China Aerospace Press, 2005
|
| [24] |
YANG Yazhou, LIN Honglei, LIU Yang, et al. The effects of viewing geometry on the spectral analysis of lunar regolith as inferred by in situ spectrophotometric measurements of Chang'E‐4[J]. Geophysical Research Letters, 2020, 47(8): e2020GL087080 doi: 10.1029/2020GL087080
|
| [25] |
SLYUTA E N. Physical and mechanical properties of the lunar soil (a review)[J]. Solar System Research, 2014, 48(5): 330-353 doi: 10.1134/S0038094614050050
|
| [26] |
OHTAKE M, MATSUNAGA T, YOKOTA Y, et al. Deriving the absolute reflectance of lunar surface using SELENE (Kaguya) multiband imager data[J]. Space Science Reviews, 2010, 154(1/2/3/4): 57-77
|
| [27] |
HAPKE B, SATO H. The porosity of the upper lunar regolith[J]. Icarus, 2016, 273: 75-83 doi: 10.1016/j.icarus.2015.10.031
|
| [28] |
SHEPARD M K, HELFENSTEIN P. A test of the Hapke photometric model[J]. Journal of Geophysical Research: Planets, 2007, 112(E3): E03001
|
| [29] |
SHEPARD M K. The bloomsburg University Goniometer (B. U. G. ) Laboratory: an Integrated Laboratory for Measuring Bidirectional Reflectance Functions[C]//Lunar and Planetary Science XXXII. Houston: LPI, 2001: abstract 1015
|
| [30] |
MCGUIRE A F, HAPKE B W. An experimental study of light scattering by large, irregular particles[J]. Icarus, 1995, 113(1): 134-155 doi: 10.1006/icar.1995.1012
|
| [31] |
GUO L, REN X, LIU D W, et al. Chang'E‐5 In Situ spectra reveal photometric properties of the lunar surface[J]. Journal of Geophysical Research: Planets, 2024, 129(2): e2023JE007847 doi: 10.1029/2023JE007847
|
| [32] |
JOHNSON J R, SHEPARD M K, GRUNDY W M, et al. Spectrogoniometry and modeling of Martian and Lunar analog samples and Apollo soils[J]. Icarus, 2013, 223(1): 383-406 doi: 10.1016/j.icarus.2012.12.004
|
| [33] |
JIANG T, ZHANG H, YANG Y Z, et al. Bi-directional reflectance and polarization measurements of pulse-laser irradiated airless body analog materials[J]. Icarus, 2019, 331: 127-147 doi: 10.1016/j.icarus.2019.05.022
|
| [34] |
LIN H L, YANG Y Z, LIN Y T, et al. Photometric properties of lunar regolith revealed by the Yutu-2 rover[J]. Astronomy :Times New Roman;">& Astrophysics, 2020, 638: A35
|
| [35] |
XU J F, WANG M Z, LIN H L, et al. In‐Situ photometric properties of lunar regolith revealed by lunar mineralogical spectrometer on board Chang’E‐5 Lander[J]. Geophysical Research Letters, 2022, 49(4): e2021GL096876 doi: 10.1029/2021GL096876
|
| [36] |
CHANG R, LIN H L, YANG W, et al. Comparison of laboratory and in situ reflectance spectra of Chang’e-5 lunar soil[J]. Astronomy :Times New Roman;">& Astrophysics, 2023, 674: A68
|
| [37] |
The Lunar and Planetary Institute. Lunar samples[EB/OL]. (2009-08-01)[2024-10-29]. https://www.lpi.usra.edu/lunar/samples
|
| [38] |
PIETERS C M, NOBLE S K. Space weathering on airless bodies[J]. Journal of Geophysical Research: Planets, 2016, 121(10): 1865-1884 doi: 10.1002/2016JE005128
|
| [39] |
LI C L, HU H, YANG M F, et al. Nature of the lunar far-side samples returned by the Chang’E-6 mission[J]. National Science Reviews, 2024, 11(11): nwae328 doi: 10.1093/nsr/nwae328
|