| Citation: | CUI Yide, WANG Sheng, YU Yang, LIU Guihong, MA Wentao, HUANG Yan, YANG Tao, YANG Xiaofeng. Shallow-water Bathymetry Mapping from Satellite SAR Imagery Using Deep Learning with Multiple Feature Inputs (in Chinese). Chinese Journal of Space Science, 2025, 45(2): 424-436 doi: 10.11728/cjss2025.02.2024-0158 |
| [1] |
SHEN W, CHEN M Y, WU Z Q, et al. Shallow-water bathymetry retrieval based on an improved deep learning method using GF-6 multispectral imagery in Nanshan Port waters[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2023, 16: 8550-8562 doi: 10.1109/JSTARS.2023.3310166
|
| [2] |
PURKIS S J, GLEASON A C R, PURKIS C R, et al. High-resolution habitat and bathymetry maps for 65, 000 sq. km of Earth’s remotest coral reefs[J]. Coral Reefs, 2019, 38(3): 467-488
|
| [3] |
AI B, WEN Z, WANG Z H, et al. Convolutional neural network to retrieve water depth in marine shallow water area from remote sensing images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13: 2888-2898 doi: 10.1109/JSTARS.2020.2993731
|
| [4] |
崔子伟, 徐文学, 刘焱雄, 等. 机载激光测深数据获取及处理技术现状[J]. 自然资源遥感, 2023, 35(3): 1-9
CUI Ziwei, XU Wenxue, LIU Yanxiong, et al. Current status of the acquisition and processing of airborne laser sounding data[J]. Remote Sensing for Natural Resources, 2023, 35(3): 1-9
|
| [5] |
李雨佳, 周晓青, 李国元, 等. 星载单光子激光雷达浅水测深技术研究进展和展望[J]. 红外与激光工程, 2022, 51(10): 20220003
LI Yujia, ZHOU Xiaoqing, LI Guoyuan, et al. Progress and prospect of space-borne photon-counting lidar shallow water bathymetry technology[J]. Infrared and Laser Engineering, 2022, 51(10): 20220003
|
| [6] |
SCHWARZ R, MANDLBURGER G, PFENNIGBAUER M, et al. Design and evaluation of a full-wave surface and bottom-detection algorithm for LiDAR bathymetry of very shallow waters[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 150: 1-10
|
| [7] |
WESTFELD P, MAAS H G, RICHTER K, et al. Analysis and correction of ocean wave pattern induced systematic coordinate errors in airborne LiDAR bathymetry[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 128: 314-325
|
| [8] |
HEDLEY J, ROELFSEMA C, PHINN S R. Efficient radiative transfer model inversion for remote sensing applications[J]. Remote Sensing of Environment, 2009, 113(11): 2527-2532
|
| [9] |
LIU Y M, TANG S L, DENG R R, et al. Mapping ultrahigh-spatial-resolution bathymetry for a wide range of coastal optically shallow waters without in situ bathymetric data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 4207716
|
| [10] |
CAO B, DENG R R, ZHU S L. Universal algorithm for water depth refraction correction in through-water stereo remote sensing[J]. International Journal of Applied Earth Observation and Geoinformation, 2020, 91: 102108
|
| [11] |
LYZENGA D R. Passive remote sensing techniques for mapping water depth and bottom features[J]. Applied Optics, 1978, 17(3): 379-383
|
| [12] |
曹斌. 光学卫星影像浅海海底地形测量方法研究[D]. 上海: 上海海洋大学, 2018
CAO Bin. A Study of Shallow Seafloor Relief Measurement Using Optical Satellite Images[D]. Shanghai: Shanghai Ocean University, 2018
|
| [13] |
LAI W D, LEE Z, WANG J W, et al. A portable algorithm to retrieve bottom depth of optically shallow waters from top-of-atmosphere measurements[J]. Journal of Remote Sensing, 2022, 2022: 9831947
|
| [14] |
LIU Y M, ZHAO J, DENG R R, et al. A downscaled bathymetric mapping approach combining multitemporal Landsat-8 and high spatial resolution imagery: demonstrations from clear to turbid waters[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 180: 65-81
|
| [15] |
CHEN B Q, YANG Y M, XU D W, et al. A dual band algorithm for shallow water depth retrieval from high spatial resolution imagery with no ground truth[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 151: 1-13
|
| [16] |
XU Y, CAO B, DENG R R, et al. Bathymetry over broad geographic areas using optical high-spatial-resolution satellite remote sensing without in-situ data[J]. International Journal of Applied Earth Observation and Geoinformation, 2023, 119: 103308
|
| [17] |
MA S, TAO Z, YANG X F, et al. Bathymetry Retrieval From Hyperspectral Remote Sensing Data in Optical-Shallow Water[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(2): 1205-1212
|
| [18] |
PACHECO A, HORTA J, LOUREIRO C, et al. Retrieval of nearshore bathymetry from Landsat 8 images: a tool for coastal monitoring in shallow waters[J]. Remote Sensing of Environment, 2015, 159: 102-116
|
| [19] |
LEGLEITER C J, OVERSTREET B T, GLENNIE C L, et al. Evaluating the capabilities of the CASI hyperspectral imaging system and Aquarius bathymetric LiDAR for measuring channel morphology in two distinct river environments[J]. Earth Surface Processes and Landforms, 2016, 41(3): 344-363
|
| [20] |
习晓环, 王子家, 王成. 基于ICESat-2/ATLAS数据的近海岸水深提取[J]. 同济大学学报(自然科学版), 2022, 50(7): 940-946 doi: 10.11908/j.issn.0253-374x.22126
XI Xiaohuan, WANG Zijia, WANG Cheng. Bathymetric extraction method of nearshore based on ICESat-2/ATLAS data[J]. Journal of Tongji University (Natural Science), 2022, 50(7): 940-946 doi: 10.11908/j.issn.0253-374x.22126
|
| [21] |
胡琪鑫, 程亮, 楚森森, 等. ICESat-2水深提取方法及其反演应用[J]. 地球物理学报, 2024, 67(3): 997-1012 doi: 10.6038/cjg2023Q0837
HU Qixin, CHENG Liang, CHU Sensen, et al. Water depth extraction of ICESat-2 and application to bathymetric inversion[J]. Chinese Journal of Geophysics, 2024, 67(3): 997-1012 doi: 10.6038/cjg2023Q0837
|
| [22] |
范开国, 黄韦艮, 傅斌, 等. 台湾浅滩浅海水深SAR遥感探测实例研究[J]. 地球物理学报, 2012, 55(1): 310-316
FAN Kaiguo, HUANG Weigen, FU Bin, et al. SAR shallow water bathymetry surveys: a case study in Taiwan Shoal[J]. Chinese Journal of Geophysics, 2012, 55(1): 310-316
|
| [23] |
BRUSCH S, HELD P, LEHNER S, et al. Underwater bottom topography in coastal areas from TerraSAR-X data[J]. International Journal of Remote Sensing, 2011, 32(16): 4527-4543
|
| [24] |
王小珍. 浅海典型水下地形SAR遥感成像机理和反演研究[D]. 杭州: 浙江大学, 2018
WANG Xiaozhen. Research on SAR Remote Sensing Imaging Mechanism and Inversion of Typical Shallow Water Topography[D]. Hangzhou: Zhejiang University, 2018
|
| [25] |
于祥祯, 种劲松, 洪文. 顺轨干涉SAR浅海地形成像建模及其最优雷达观测参数分析[J]. 电子与信息学报, 2010, 32(10): 2377-2382
YU Xiangzhen, CHONG Jinsong, HONG Wen. Shallow sea topography imaging model by along-track interferometric SAR and its optimal radar parameters analysis[J]. Journal of Electronics :Times New Roman;">& Information Technology, 2010, 32(10): 2377-2382
|
| [26] |
ALPERS W, HENNINGS I. A theory of the imaging mechanism of underwater bottom topography by real and synthetic aperture radar[J]. Journal of Geophysical Research: Oceans, 1984, 89(C6): 10529-10546
|
| [27] |
BIAN X L, SHAO Y, WANG S A, et al. Shallow water depth retrieval from multitemporal sentinel-1 SAR data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(9): 2991-3000 doi: 10.1109/JSTARS.2018.2851845
|
| [28] |
YUAN Y L, HUA F, PAN Z D, et al. LAGFD-WAM numerical wave model——I. basic physical model[J]. Acta Oceanologica Sinica, 1991, 10(4): 483-488
|
| [29] |
ZHANG S S, LIU B, LI X F, et al. Automatic extraction of internal wave signature from multiple satellite sensors based on deep convolutional neural networks[C]//IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium. Waikoloa: IEEE, 2020: 5717-5720
|
| [30] |
WANG J, ZHANG H G, YANG J S, et al. A new mapping method of underwater bottom topography in the shallow sea by using SAR images[C]//Remote Sensing of the Ocean, Sea Ice, Coastal Waters, and Large Water Regions 2016. Edinburgh: SPIE Remote Sensing, 2016
|
| [31] |
范开国. 基于海面微波成像仿真M4S软件的SAR浅海地形遥感探测[D]. 青岛: 中国海洋大学, 2009
FAN Kaiguo. Shallow water bathymetry surveys by SAR based on M4S for simulations of microwave imaging oceanic surface[D]. Qingdao: Ocean University of China, 2009
|
| [32] |
LI D F, ZHAO Z Q. Facet-based hybrid method for electromagnetic scattering from shallow water waves modulated by submarine topography[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 2004314
|
| [33] |
HUANG L Y, MENG J M, FAN C Q, et al. Shallow sea topography detection from multi-source SAR satellites: a case study of Dazhou Island in China[J]. Remote Sensing, 2022, 14(20): 5184
|
| [34] |
BIAN X L, SHAO Y, TIAN W, et al. Underwater topography detection in coastal areas using fully polarimetric SAR data[J]. Remote Sensing, 2017, 9(6): 560
|
| [35] |
PEREIRA P, BAPTISTA P, CUNHA T, et al. Estimation of the nearshore bathymetry from high temporal resolution Sentinel-1A C-band SAR data - a case study[J]. Remote Sensing of Environment, 2019, 223: 166-178
|
| [36] |
荣飞成, 孟俊敏, 纪永刚. 基于SAR子孔径图像的浅海水下地形探测[J]. 遥测遥控, 2024, 45(1): 106-115
RONG Feicheng, MENG Junmin, JI Yonggang. Shallow sea underwater topography detection based on SAR subaperture image[J]. Journal of Telemetry, Tracking and Command, 2024, 45(1): 106-115
|
| [37] |
房超, 汪胜, 刘桂红, 等. 基于SAR卫星观测的北极冰涡时空分布特征[J]. 空间科学学报, 2023, 43(6): 1125-1134 doi: 10.11728/cjss2023.06.2023-0088
FANG Chao, WANG Sheng, LIU Guihong, et al. Spatio-temporal distribution characteristics of arctic ice eddies based on SAR satellite observations[J]. Chinese Journal of Space Science, 2023, 43(6): 1125-1134 doi: 10.11728/cjss2023.06.2023-0088
|
| [38] |
任诗鹤, 韩焱红, 李竞时, 等. 基于U-Net的海洋锋智能检测模型[J]. 空间科学学报, 2023, 43(6): 1091-1099 doi: 10.11728/cjss2023.06.2023-0097
REN Shihe, HAN Yanhong, LI Jingshi, et al. Oceanic front detection model based on U-Net network[J]. Chinese Journal of Space Science, 2023, 43(6): 1091-1099 doi: 10.11728/cjss2023.06.2023-0097
|
| [39] |
LEE S, KIM D J, LI C L, et al. A new model for high-accuracy monitoring of water level changes via enhanced water boundary detection and reliability-based weighting averaging[J]. Remote Sensing of Environment, 2024, 313: 114360 doi: 10.1016/j.rse.2024.114360
|
| [40] |
YANG H Y, FANG C, WANG S, et al. On the ambiguity removal of wind direction derived from space-borne SAR imagery using deep learning[J]. Remote Sensing of Environment, 2024, 308: 114202 doi: 10.1016/j.rse.2024.114202
|
| [41] |
YUROVSKY Y Y, KUDRYAVTSEV V N, YUROVSKAYA M V, et al. Tropical cyclone signatures in SAR ocean radial Doppler Velocity[J]. Remote Sensing of Environment, 2024, 311: 114251
|
| [42] |
ZHAO X N, WANG D Q, XU H L, et al. Water deep mapping from HJ-1B satellite data by a deep network model in the sea area of Pearl River Estuary, China[J]. Open Geosciences, 2021, 13(1): 782-795
|
| [43] |
WU Z Q, MAO Z H, SHEN W, et al. Satellite-derived bathymetry based on machine learning models and an updated quasi-analytical algorithm approach[J]. Optics Express, 2022, 30(10): 16773-16793 doi: 10.1364/OE.456094
|
| [44] |
KALOOP M R, El-DIASTY M, HU J W, et al. Hybrid artificial neural networks for modeling shallow-water bathymetry via satellite imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5403811
|
| [45] |
ZHONG J, SUN J, LAI Z L, et al. Nearshore bathymetry from ICESat-2 LiDAR and Sentinel-2 imagery datasets using deep learning approach[J]. Remote Sensing, 2022, 14(17): 4229 doi: 10.3390/rs14174229
|
| [46] |
LI X F, YANG X F, ZHENG Q N, et al. Deep-water bathymetric features imaged by spaceborne SAR in the Gulf Stream region[J]. Geophysical Research Letters, 2010, 37: L19603
|