Volume 45 Issue 2
Apr.  2025
Turn off MathJax
Article Contents
TAN Jiaheng, YONG Qiang, XU Wei. Design and Experiment of Optical Transmission Device for Laser Communication between Rotating Components on Satellite (in Chinese). Chinese Journal of Space Science, 2025, 45(2): 629-640 doi: 10.11728/cjss2025.02.2024-0160
Citation: TAN Jiaheng, YONG Qiang, XU Wei. Design and Experiment of Optical Transmission Device for Laser Communication between Rotating Components on Satellite (in Chinese). Chinese Journal of Space Science, 2025, 45(2): 629-640 doi: 10.11728/cjss2025.02.2024-0160

Design and Experiment of Optical Transmission Device for Laser Communication between Rotating Components on Satellite

doi: 10.11728/cjss2025.02.2024-0160 cstr: 32142.14.cjss.2024-0160
  • Received Date: 2024-11-13
  • Rev Recd Date: 2024-12-29
  • Available Online: 2025-02-20
  • Aiming to address the demand for high-capacity and high-reliability data transmission between a rotating imaging ultra-wide-field space camera and the satellite platform, a space optical transmission device based on laser communication was designed, and the high-precision optical testing and alignment scheme was studied. The device’s reliability was enhanced by installing the primary and backup collimators at both the transmitter and the receiver, with mutual backup achieved through the design of multiple optical channels. At the same time, a high-precision alignment scheme to ensure accurate measurement and alignment of the collimator’s optical axis was proposed. Finally, the modal analysis of the space optical transmission device was carried out by using the finite element analysis software MSC.PATRAN and the vibration test of the installed space optical transmission device was completed. The results show that the first-order frequency of the transmitter of the space optical transmission device is 264.25 Hz, and the first-order frequency of the receiver is 434.35 Hz. After the vibration test, the maximum optical power penalty between the transceiver collimator is 1.94 dB, and the spatial angle change of each prism reference surface normal is within 5". It shows that the space optical transmission device can overcome the influence of a complex mechanical environment during the satellite launch, has high alignment precision and reliability, and meets the requirements of laser communication data transmission between satellite-borne rotating components.

     

  • loading
  • [1]
    BAI Z F, MENG J C, SU Y L, et al. On-orbit demonstration of inter-satellite free-space optical stable communication enabled by integrated optical amplification of HPA and LNA[J]. Applied Optics, 2023, 62(23): G18-G25 doi: 10.1364/AO.484983
    [2]
    KIRRBACH R, FAULWASSER M, SCHNEIDER T, et al. Monolitic hybrid transmitter-receiver lens for rotary on-axis communications[J]. Applied Sciences, 2020, 10(4): 1540 doi: 10.3390/app10041540
    [3]
    LI M, GUO Y, WANG X, et al. Researching pointing error effect on laser linewidth tolerance in space coherent optical communication systems[J]. Optics Express, 2022, 30(4): 5769-5787 doi: 10.1364/OE.447408
    [4]
    杨成武, 谌明, 刘向南, 等. 小卫星激光通信终端技术现状与发展趋势[J]. 遥测遥控, 2021, 42(3): 1-7

    YANG Chengwu, CHEN Ming, LIU Xiangnan, et al. Current status and development trends of minisatellite laser communication terminal technology[J]. Journal of Telemetry, Tracking and Command, 2021, 42(3): 1-7
    [5]
    WU L, GAO Z R, ZHU Z J, et al. Design of dynamic testing device for watertight opto-electrical rotary joint[C]//Proceedings of 2021 IEEE International Conference on Computer Science, Electronic Information Engineering and Intelligent Control Technology. Fuzhou: IEEE, 2021: 733-736
    [6]
    张群, 钱建国, 刘一. 一种光纤旋转连接器的设计改进[J]. 现代雷达, 2020, 42(2): 80-84

    ZHANG Qun, QIAN Jianguo, LIU Yi. Design improvement of fiber optic rotary joint[J]. Modern Radar, 2020, 42(2): 80-84
    [7]
    LI D Q, MAO Z Y, SUN L J, et al. Analysis of coaxiality error induced by the cube corner retro-reflector geometrical and assembly errors of an acquisition, pointing, and tracking system[J]. Photonics, 2023, 10(10): 1176 doi: 10.3390/photonics10101176
    [8]
    赖小皇, 于兵, 马晓东. 基于激光的航空发动机转子部件参数非接触传输系统[J]. 电子器件, 2016, 39(5): 1224-1231 doi: 10.3969/j.issn.1005-9490.2016.05.040

    LAI Xiaohuang, YU Bing, MA Xiaodong. Non-contact parameters transmission system for rotor parts of aero engine based on wireless laser[J]. Chinese Journal of Electron Devices, 2016, 39(5): 1224-1231 doi: 10.3969/j.issn.1005-9490.2016.05.040
    [9]
    谭雯, 沈三民, 谭秋林, 等. 一种用于旋转环境的无线激光数据传输模块设计[J]. 电子器件, 2021, 44(3): 525-529 doi: 10.3969/j.issn.1005-9490.2021.03.003

    TAN Wen, SHEN Sanmin, TAN Qiulin, et al. Wireless laser data transmission module for rotating environment[J]. Chinese Journal of Electron Devices, 2021, 44(3): 525-529 doi: 10.3969/j.issn.1005-9490.2021.03.003
    [10]
    白杨杨, 陈力兵, 孟立新, 等. 库德式激光通信终端粗跟踪技术[J]. 兵工学报, 2021, 42(9): 1931-1939 doi: 10.3969/j.issn.1000-1093.2021.09.014

    BAI Yangyang, CHEN Libing, MENG Lixin, et al. Coarse tracking technology of coude-type laser communication terminal[J]. Acta Armamentarii, 2021, 42(9): 1931-1939 doi: 10.3969/j.issn.1000-1093.2021.09.014
    [11]
    LEE J, RHEE H G, SON E S, et al. Optimal design of a coudé mirror assembly for a 1-m class ground telescope[J]. Current Optics and Photonics, 2023, 7(4): 435-442
    [12]
    黄龙, 张文会. 潜望式激光通信瞄准机构误差计算[J]. 中国光学, 2015, 8(5): 840-846 doi: 10.3788/co.20150805.0840

    HUANG Long, ZHANG Wenhui. Error calculation of periscope pointing assembly for laser communication[J]. Chinese Optics, 2015, 8(5): 840-846 doi: 10.3788/co.20150805.0840
    [13]
    HE Q, ZHAO Z G, YE X D, et al. Optical coupling efficiency of a coupler with double-combined collimating lenses and thermally expanded core fibers[J]. Micromachines, 2022, 13(2): 324 doi: 10.3390/mi13020324
    [14]
    REN W J, SUN J F, CONG H S, et al. Sensitivity deterioration of free-space optical coherent/non-coherent OOK modulation receiver by ambient light noise[J]. Sensors, 2023, 23(4): 2140 doi: 10.3390/s23042140
    [15]
    吴从均, 颜昌翔, 高志良. 空间激光通信发展概述[J]. 中国光学, 2013, 6(5): 670-680

    WU Congjun, YAN Changxiang, GAO Zhiliang. Overview of space laser communications[J]. Chinese Optics, 2013, 6(5): 670-680
    [16]
    JING W C, JIA D G, TANG F, et al. Design and implementation of a broadband optical rotary joint using C-lenses[J]. Optics Express, 2004, 12(17): 4088-4093 doi: 10.1364/OPEX.12.004088
    [17]
    ZHAO Z G, DUAN S F, XU X P, et al. Bidirectional transmission of a collimator with double-combined collimating lenses and thermally expanded core fibers[J]. Review of Scientific Instruments, 2023, 94(3): 035105 doi: 10.1063/5.0131037
    [18]
    MI L, YAO S L, SUN C D, et al. A single-channel fiber optic rotary joint on the basis of TEC fiber collimators[C]//Proceedings of the 9th International Conference on Optical Communications and Networks. Nanjing: IET, 2010: 437-440
    [19]
    ZHAO Z G, CAO F S, WANG S F, et al. Study on optical coupling characteristics of a high-radial-tolerance thick-lens beam expanding fiber collimator[J]. Infrared Physics :Times New Roman;">& Technology, 2023, 133: 104846
    [20]
    张健, 王健飞, 方新, 等. 航空遥感器平面反射镜系统装调方法[J]. 中国光学, 2022, 15(3): 534-544 doi: 10.37188/CO.2021-0187

    ZHANG Jian, WANG Jianfei, FANG Xin, et al. Alignment method of plane reflecting mirror system for aerial remote sensor[J]. Chinese Optics, 2022, 15(3): 534-544 doi: 10.37188/CO.2021-0187
    [21]
    杨振, 李广云, 贺磊. 光学准直测量方法与精度分析[J]. 红外与激光工程, 2011, 40(2): 282-286 doi: 10.3969/j.issn.1007-2276.2011.02.022

    YANG Zhen, LI Guangyun, HE Lei. Measurement methods and precision analysis of optical collimation[J]. Infrared and Laser Engineering, 2011, 40(2): 282-286 doi: 10.3969/j.issn.1007-2276.2011.02.022
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(7)

    Article Metrics

    Article Views(634) PDF Downloads(21) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return