Volume 45 Issue 2
Apr.  2025
Turn off MathJax
Article Contents
FENG Aihu, DAI Jieyan, GAO Xu, ZHANG Qingchun, YU Yun. Adsorption Mechanism of NaY Zeolite on Space Contaminants in the CO2-rich Atmosphere of Mars (in Chinese). Chinese Journal of Space Science, 2025, 45(2): 310-316 doi: 10.11728/cjss2025.02.2024-0161
Citation: FENG Aihu, DAI Jieyan, GAO Xu, ZHANG Qingchun, YU Yun. Adsorption Mechanism of NaY Zeolite on Space Contaminants in the CO2-rich Atmosphere of Mars (in Chinese). Chinese Journal of Space Science, 2025, 45(2): 310-316 doi: 10.11728/cjss2025.02.2024-0161

Adsorption Mechanism of NaY Zeolite on Space Contaminants in the CO2-rich Atmosphere of Mars

doi: 10.11728/cjss2025.02.2024-0161 cstr: 32142.14.cjss.2024-0161
  • Received Date: 2024-11-13
  • Rev Recd Date: 2024-12-22
  • Available Online: 2025-01-20
  • Zeolite can effectively collect space contaminants in real time, which is a new approach to control the space molecular contamination. During the long-duration flight, the Mars probe faces not only a high-vacuum environment, but also a special CO2-rich environment in the Martian atmosphere. In order to overcome the molecular contamination of the highly sensitive analyzers and other optical sensitive parts of the Mars probe, and as well as to reduce the possibility of false-positive signs of life caused by the molecular contaminant, there is an urgent need to verify whether the zeolite molecular adsorption coating can be applied to Mars probe mission. In order to simulate the special Martian atmospheric environment, this work focuses on the adsorption behavior of NaY zeolite on toluene under CO2 atmosphere. It is confirmed that CO2 molecules are mainly adsorbed at the β-cage site of NaY zeolite, while toluene molecules are prefer-entially adsorbed at the “super-cage” site. So the NaY zeolite is fully applicable under the real CO2-rich conditions in Martian atmosphere, and the adsorption properties of the coating on the low concentration molecular pollutants are not affected.

     

  • loading
  • [1]
    ABRAHAM N S, JALLICE D E. Preliminary testing of NASA’s molecular Adsorber coating technology for future missions to Mars[C/OL]. (2018-10-09) [2024-04-07]. https://ntrs.nasa.gov/citations/20180006126
    [2]
    STRAKA S, PETERS W, HASEGAWA M, et al. Development of molecular adsorber coatings[C]//Proceedings of the SPIE Optical System Contamination: Effects, Measurements, and Control 2010. San Diego: SPIE, 2010, 7794: 77940C
    [3]
    ABRAHAM N S, HASEGAWA M M, STRAKA S A. Development and testing of molecular Adsorber coatings[C]//Optical System Contamination: Effects, Measurements, and Control 2012. San Diego: SPIE, 2012, 8492: 849203
    [4]
    PARK J, CHO K H, KIM J C, et al. Design of olefin-phobic zeolites for efficient ethane and ethylene separation[J]. Chemistry of Materials, 2023, 35(5): 2078-2087 doi: 10.1021/acs.chemmater.2c03645
    [5]
    FU D L, PARK Y, DAVIS M E. Zinc containing small-pore zeolites for capture of low concentration carbon dioxide[J]. Angewandte Chemie International Edition, 2022, 61(5): e202112916
    [6]
    ABRAHAM N S, HASEGAWA M M, SECUNDA M S. Application of the molecular adsorber coating technology on the ionospheric connection explorer program[C]//Systems Contamination: Prediction, Control, and Performance 2016. San Diego Convention Center. San Diego: SPIE, 2016, 9952: 99520D
    [7]
    ABRAHAM N S, HASEGAWA M M, WOOLDRIDGE E M, et al. The use of the molecular adsorber coating technology to mitigate vacuum chamber contamination during pathfinder testing for the James Webb Space Telescope[C]//Systems Contamination: Prediction, Control, and Performance 2016. San Diego: SPIE, 2016, 9952: 99520C
    [8]
    ABRAHAM N S, JALLICE D E. Using NASA’s Molecular Adsorber Coating technology during thermal vacuum testing to protect critical laser flight optics on the ATLAS instrument[C]//Systems Contamination: Prediction, Control, and Performance 2018. San Diego: SPIE, 2018, 10748: 107480F
    [9]
    LAURIDANT N, DAOU T J, ARNOLD G, et al. Zeolite hybrid films for space decontamination[J]. Microporous and Mesoporous Materials, 2013, 172: 36-43
    [10]
    李娜, 院小雪, 孟立飞, 等. 沸石分子筛对航天器分子污染物的吸附性能研究[J]. 宇航学报, 2016, 37(4): 494-498

    LI Na, YUAN Xiaoxue, MENG Lifei, et al. Absorption properties of zeolite molecular sieves in contamination control of spacecraft[J]. Journal of Astronautics, 2016, 37(4): 494-498
    [11]
    卢松涛, 李杨, 洪杨, 等. 一种具有热控功能的白色分子吸附涂层的制备方法: CN, 202011357083.1[P]. 2021-03-12

    LU Songtao, LI Yang, HONG Yang, et al. Preparation method of white molecular adsorption coating with thermal control function: CN, 202011357083.1[P]. 2021-03-12
    [12]
    FENG A H, DAI J Y, GAO X, et al. Influence of the surfactant on structural characterizations and molecular adsorption properties of surfactant-templated NaY zeolite[J]. Chemical Physics Letters, 2024, 841: 141181
    [13]
    戴洁燕, 冯爱虎, 米乐, 等. NaY沸石分子吸附涂层对典型空间污染物的吸附机制研究[J]. 无机材料学报, 2023, 38(10): 1237-1244

    DAI Jieyan, FENG Aihu, MI Le, et al. Adsorption mechanism of NaY zeolite molecular Adsorber coating on typical space contaminations[J]. Journal of Inorganic Materials, 2023, 38(10): 1237-1244
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)

    Article Metrics

    Article Views(262) PDF Downloads(23) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return