Volume 45 Issue 2
Apr.  2025
Turn off MathJax
Article Contents
DONG Ziming, XU Xingou, LIU Lu. Simulation of Rotating System Microwave Scatterometer Performance and Observation of Tropical Cyclone (in Chinese). Chinese Journal of Space Science, 2025, 45(2): 383-396 doi: 10.11728/cjss2025.02.2024-0165
Citation: DONG Ziming, XU Xingou, LIU Lu. Simulation of Rotating System Microwave Scatterometer Performance and Observation of Tropical Cyclone (in Chinese). Chinese Journal of Space Science, 2025, 45(2): 383-396 doi: 10.11728/cjss2025.02.2024-0165

Simulation of Rotating System Microwave Scatterometer Performance and Observation of Tropical Cyclone

doi: 10.11728/cjss2025.02.2024-0165 cstr: 32142.14.cjss.2024-0165
  • Received Date: 2024-11-17
  • Accepted Date: 2025-03-07
  • Rev Recd Date: 2025-03-07
  • Available Online: 2025-03-27
  • The observation of high speed wind fields, especially tropical cyclone wind fields, has long been an important research subject in scatterometer remote sensing. In this study, we analyzed the backscattering coefficient measurement accuracies and wind retrieval performances of the two scatterometer systems that have been operational in China: the rotating fan-beam system and the rotating pencil-beam system by simulation methods. Simulations at varying wind speed wind fields and tropical cyclone wind fields observations are conducted for both systems. Simulation results obtained with reference to the parameters of existing operational scatterometers show that the rotating fan-beam system demonstrates superior sampling capacity compared to the rotating pencil-beam system, with the vast majority of its observation views gaining a greater number of independent observation samples than 1000, whereas the rotating pencil-beam system has mainly 100~400 independent observation samples for each observation view only. This sampling advantage enables the rotating fan-beam system to achieve better performance in backscattering coefficient measurement and wind field retrieval in the simulations for wind fields with high wind speeds above 20 m·s–1. At the same time, the normalized SNR of each observation view is higher for the rotating pencil-beam system, which is about 300~600 per observation view, compared to 6~14 for the rotating fan-beam system. This SNR superiority enables the rotating pencil-beam system to maintain a more precise observation for wind fields with low and medium wind speeds below 20 m·s–1 in the simulation. This study reveals the performance characteristics of backscattering coefficient measurement and wind field retrieval of different scatterometer systems under various wind speed conditions, which is of reference significance for high speed wind fields retrieval and tropical cyclone wind fields observation. Meanwhile, the conclusions of this study also lay a foundation for subsequent research on the improvement of scatterometer wind field observation accuracy and optimization of signal processing algorithms for different scatterometer systems.

     

  • loading
  • [1]
    HAUSER D, ABDALLA S, ARDHUIN F, et al. Satellite remote sensing of surface winds, waves, and currents: where are we now?[J]. Surveys in Geophysics, 2023, 44(5): 1357-1446 doi: 10.1007/s10712-023-09771-2
    [2]
    BOURASSA M A, MEISSNER T, CEROVECKI I, et al. Remotely sensed winds and wind stresses for marine forecasting and ocean modeling[J]. Frontiers in Marine Science, 2019, 6: 443 doi: 10.3389/fmars.2019.00443
    [3]
    郎姝燕, 孙从容, 鲁云飞, 等. 中法海洋卫星微波散射计近海岸产品在台风遥感监测中的应用[J]. 海洋气象学报, 2022, 42(2): 74-80

    LANG Shuyan, SUN Congrong, LU Yunfei, et al. Application of Chinese-French oceanography satellite scatterometer coastal product in typhoon remote sensing monitoring[J]. Journal of Marine Meteorology, 2022, 42(2): 74-80
    [4]
    IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change[M]. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press, 2021
    [5]
    SPENCER M W, WU C, LONG D G. Tradeoffs in the design of a spaceborne scanning pencil beam scatterometer: application to SeaWinds[J]. IEEE Transactions on Geoscience and Remote Sensing, 1997, 35(1): 115-126 doi: 10.1109/36.551940
    [6]
    ANDERSON C, BONEKAMP H, DUFF C, et al. Analysis of ASCAT ocean backscatter measurement noise[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(7): 2449-2457 doi: 10.1109/TGRS.2012.2190739
    [7]
    LIN W M, DONG X L, PORTABELLA M, et al. A Perspective on the Performance of the CFOSAT rotating Fan-beam scatterometer[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(2): 627-639 doi: 10.1109/TGRS.2018.2858852
    [8]
    SHANG J, WANG Z X, DOU F L, et al. Preliminary performance of the WindRAD scatterometer onboard the FY-3E meteorological satellite[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5100813
    [9]
    宋忠国, 董晓龙, 林文明, 等. 星载全极化微波散射计系统仿真与性能分析[J]. 电子学报, 2013, 41(12): 2382-2390 doi: 10.3969/j.issn.0372-2112.2013.12.010

    SONG Zhongguo, DONG Xiaolong, LIN Wenming, et al. Spaceborne polarimetric microwave scatterometer system simulation and performance analysis[J]. Acta Electronica Sinica, 2013, 41(12): 2382-2390 doi: 10.3969/j.issn.0372-2112.2013.12.010
    [10]
    杨晟, 邹巨洪, 林明森. 星载全极化微波散射计仿真与海面风场反演研究[J]. 应用海洋学学报, 2018, 37(2): 179-184 doi: 10.3969/J.ISSN.2095-4972.2018.02.004

    YANG Sheng, ZOU Juhong, LIN Mingsen. Spaceborne fully polarized microwave scatterometer simulation and ocean surface wind retrieval[J]. Journal of Applied Oceanography, 2018, 37(2): 179-184 doi: 10.3969/J.ISSN.2095-4972.2018.02.004
    [11]
    BAO Q L, DONG X L, ZHU D, et al. The feasibility of ocean surface current measurement using pencil-beam rotating scatterometer[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(7): 3441-3451 doi: 10.1109/JSTARS.2015.2414451
    [12]
    POLVERARI F, PORTABELLA M, LIN W M, et al. On high and extreme wind calibration using ASCAT[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 4202210
    [13]
    XU X G, STOFFELEN A, NI W C, et al. Extreme winds from Ku-band and C-band wind scatterometers[C]//IGARSS 2023-2023 IEEE International Geoscience and Remote Sensing Symposium. Pasadena: IEEE, 2023: 4064-4067
    [14]
    C3S. ERA5 hourly data on single levels from 1940 to present[DS/OL]. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). 2018[2024–11-10]. https://cds.climate.copernicus.eu/doi/10.24381/cds.adbb2d47
    [15]
    ZHANG Y, LIN M S, XIE X T, et al. The improvement of HY-2 Satellite’s microwave scatterometer instrument and NRCS calculation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5112109
    [16]
    于淼淼, 朱迪, 董晓龙, 等. 中法海洋卫星微波散射计后向散射测量误差分析[J]. 海洋气象学报, 2024, 44(4): 46-53

    YU Miaomiao, ZHU Di, DONG Xiaolong, et al. Analysis of backscattering measurement error of CSCAT[J]. Journal of Marine Meteorology, 2024, 44(4): 46-53
    [17]
    林文明. 星载扇形波束扫描微波散射计系统研究[D]. 北京: 中国科学院研究生院, 2011

    LIN Wenming. Study on Spaceborne Rotating, Range-Gated, Fanbeam Scatterometer System[D]. Beijing: University of Chinese Academy of Sciences, 2011
    [18]
    林明森, 邹巨洪, 解学通, 等. HY-2A微波散射计风场反演算法[J]. 中国工程科学, 2013, 15(7): 68-74 doi: 10.3969/j.issn.1009-1742.2013.07.010

    LIN Mingsen, ZOU Juhong, XIE Xuetong, et al. HY-2A microwave scatterometer wind retrieval algorithm[J]. Strategic Study of CAE, 2013, 15(7): 68-74 doi: 10.3969/j.issn.1009-1742.2013.07.010
    [19]
    董楹, 林文明. CFOSAT散射计海面后向散射系数误差及影响[J]. 空间科学学报, 2024, 44(2): 326-334 doi: 10.11728/cjss2024.02.2023-0144

    DONG Ying, LIN Wenming. analysis of sea surface backscatter coefficient errors and its effects for the CFOSAT scatterometer[J]. Chinese Journal of Space Science, 2024, 44(2): 326-334 doi: 10.11728/cjss2024.02.2023-0144
    [20]
    LIN C C, STOFFELEN A, DE KLOE J, et al. Wind retrieval capability of rotating range-gated fanbeam spaceborne scatterometer[C]//Proceedings of SPIE 4881, Sensors, Systems, and Next-Generation Satellites VI. Crete, Greece: SPIE, 2003: 268
    [21]
    郎姝燕. 星载微波散射计系统仿真、性能评估与优化[D]. 中国科学院研究生院, 2008

    LANG Shuyan. Simulation and Optimization of Spaceborne Microwave Scatterometer[D]. Beijing: University of Chinese Academy of Sciences, 2008
    [22]
    董晓龙, 朱迪, 林文明, 等. 中法海洋卫星微波散射计在轨性能验证[J]. 空间科学学报, 2020, 40(3): 425-431 doi: 10.11728/cjss2020.03.425

    DONG Xiaolong, ZHU Di, LIN Wenming, et al. Orbit performances validation for CFOSAT scatterometer[J]. Chinese Journal of Space Science, 2020, 40(3): 425-431 doi: 10.11728/cjss2020.03.425
    [23]
    ZHANG Y, MU B, LIN M S, et al. An evaluation of the Chinese HY-2B Satellite’s microwave scatterometer instrument[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(6): 4513-4521 doi: 10.1109/TGRS.2020.3008405
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(3)

    Article Metrics

    Article Views(257) PDF Downloads(22) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return