Volume 45 Issue 2
Apr.  2025
Turn off MathJax
Article Contents
YE Han, ZHANG Zijin, DONG Xiaolong, ZHU Di, ZHANG Jingyu. Simulation Study on the Detection Signal of Atmospheric Wind Field within Clouds Using Spaceborne W-band Doppler Radar (in Chinese). Chinese Journal of Space Science, 2025, 45(2): 340-352 doi: 10.11728/cjss2025.02.2024-0189
Citation: YE Han, ZHANG Zijin, DONG Xiaolong, ZHU Di, ZHANG Jingyu. Simulation Study on the Detection Signal of Atmospheric Wind Field within Clouds Using Spaceborne W-band Doppler Radar (in Chinese). Chinese Journal of Space Science, 2025, 45(2): 340-352 doi: 10.11728/cjss2025.02.2024-0189

Simulation Study on the Detection Signal of Atmospheric Wind Field within Clouds Using Spaceborne W-band Doppler Radar

doi: 10.11728/cjss2025.02.2024-0189 cstr: 32142.14.cjss.2024-0189
  • Received Date: 2024-12-18
  • Accepted Date: 2025-01-23
  • Rev Recd Date: 2025-01-23
  • Available Online: 2025-03-19
  • The detection of the global three-dimensional atmospheric wind field plays a crucial role in improving the accuracy of numerical weather prediction, enhancing the ability of meteorological disaster early warning, and ensuring the safety of aerospace activities. At present, the main methods for detecting the atmospheric wind field include ground-based wind profile radars, spaceborne Doppler lidars, and millimeter-wave cloud radars, etc. Ground-based wind profile radars are difficult to deploy in oceanic and remote terrestrial areas, making it impossible to achieve global networked observations. Spaceborne Doppler Lidars can accurately detect the atmospheric wind field in clear-sky regions, but they are unable to obtain data on the wind field within clouds. Compared with lasers, millimeter waves have better penetration capabilities and possess unique advantages in the detection of the wind field within clouds. However, existing spaceborne millimeter-wave cloud radars cannot provide information on the horizontal wind field. Spaceborne millimeter-wave cloud radars with a conical scanning system can achieve the detection of the three-dimensional atmospheric wind field within clouds. In this paper, a signal simulation system for the atmospheric wind field detection within clouds by a spaceborne W-band Doppler radar was established, which provided a theoretical basis and technical reference for in-cloud wind field detection. The required elements of the signal simulation system include atmospheric profile data, reflectivity factor, attenuation coefficient, radar system parameters, spaceborne observation geometry, echo signal amplitude, echo signal frequency, echo signal phase, echo signals, and radial velocity. The system processes actual cloud profile data and simulates radar echo signals to estimate the radial wind speed. The effects of Signal-to-Noise Ratio (SNR) and pulse-pair cumulative number on the estimation accuracy of radial wind speed were systematically analyzed. The results show that for a spaceborne W-band Doppler radar, when the polarization pulse interval is not greater than 20 μs, the polarization diversity pulse-pair technique can achieve a wind speed detection range of 0 to 40 m·s–1, effectively obtaining high wind speed products within clouds. The estimation accuracy of radial wind velocity is positively correlated with the increase in SNR and the number of pulse-pair accumulations. Under the index conditions of the radar system described in this paper, when the SNR is 0 dB and the number of pulse-pair accumulations is 64, the estimation accuracy of the radial wind speed is 1.34 m·s–1, which can meet the wind measurement accuracy requirement of 2 m·s–1 for numerical weather prediction.

     

  • loading
  • [1]
    TRIDON F, BATTAGLIA A, RIZIK A, et al. Filling the gap of wind observations inside tropical cyclones[J]. Earth and Space Science, 2023, 10(11): e2023EA003099 doi: 10.1029/2023EA003099
    [2]
    CHEN J F, XIE C B, JI J, et al. Performance evaluation and error tracing of rotary rayleigh Doppler wind LiDAR[J]. Photonics, 2024, 11(5): 398 doi: 10.3390/photonics11050398
    [3]
    张文建. 世界气象组织全球综合观测系统(WIGOS)空间部分2040年远景发展规划的解读[J]. 气象科技进展, 2016, 6(1): 135-145
    [4]
    ILLINGWORTH A J, BATTAGLIA A, BRADFORD J, et al. WIVERN: a new satellite concept to provide global in-cloud winds, precipitation, and cloud properties[J]. Bulletin of the American Meteorological Society, 2018, 99(8): 1669-1687 doi: 10.1175/BAMS-D-16-0047.1
    [5]
    冯玉涛, 傅頔, 赵增亮, 等. 星载被动光学遥感大气风场探测技术进展综述[J]. 光学学报, 2023, 43(6): 0601011 doi: 10.3788/AOS221462

    FENG Yutao, FU Di, ZHAO Zengliang, et al. An overview of spaceborne atmospheric wind field measurement with passive optical remote sensing[J]. Acta Optica Sinica, 2023, 43(6): 0601011 doi: 10.3788/AOS221462
    [6]
    赵新宇, 闵锦忠, 朱利剑, 等. 风廓线雷达资料的应用: 质量评估[J]. 大气科学学报, 2023, 46(3): 453-465

    ZHAO Xinyu, MIN Jinzhong, ZHU Lijian, et al. Application of wind profiler radar data: quality assessment[J]. Transactions of Atmospheric Sciences, 2023, 46(3): 453-465
    [7]
    STOFFELEN A, BENEDETTI A, BORDE R, et al. Wind profile satellite observation requirements and capabilities[J]. Bulletin of the American Meteorological Society, 2020, 101(11): E2005-E2021 doi: 10.1175/BAMS-D-18-0202.1
    [8]
    刘子力, 杨家俊, 王文静, 等. 遥感图像云检测方法综述[J]. 中国空间科学技术, 2023, 43(1): 1-17 doi: 10.11728/cjss2023.01.yg02

    LIU Zili, YANG Jiajun, WANG Wenjing, et al. Cloud detection methods for remote sensing images: a survey[J]. Chinese Space Science and Technology, 2023, 43(1): 1-17 doi: 10.11728/cjss2023.01.yg02
    [9]
    LACHLAN-COPE T. Antarctic clouds[J]. Polar Research, 2010, 29(2): 150-158 doi: 10.1111/j.1751-8369.2010.00148.x
    [10]
    高磊. W波段测云雷达系统设计与实现[D]. 长沙: 国防科技大学, 2018

    GAO Lei. Design and Implementation of W-Band Cloud Radar System[D]. Changsha: National University of Defense Technology, 2018
    [11]
    EISINGER M, MARNAS F, WALLACE K, et al. The EarthCARE mission: science data processing chain overview[J]. Atmospheric Measurement Techniques, 2024, 17(2): 839-862 doi: 10.5194/amt-17-839-2024
    [12]
    DONOVAN D P, VAN ZADELHOFF G J, WANG P. The EarthCARE lidar cloud and aerosol profile processor (A-PRO): the A-AER, A-EBD, A-TC, and A-ICE products[J]. Atmospheric Measurement Techniques, 2024, 17(17): 5301-5340 doi: 10.5194/amt-17-5301-2024
    [13]
    SCARSI F E, BATTAGLIA A, TRIDON F, et al. Mispointing characterization and Doppler velocity correction for the conically scanning WIVERN Doppler radar[J]. Atmospheric Measurement Techniques, 2024, 17(2): 499-514 doi: 10.5194/amt-17-499-2024
    [14]
    BATTAGLIA A, MARTIRE P, CAUBET E, et al. Observation error analysis for the WInd VElocity Radar Nephoscope W-band Doppler conically scanning spaceborne radar via end-to-end simulations[J]. Atmospheric Measurement Techniques, 2022, 15(9): 3011-3030. doi: 10.5194/amt-15-3011-2022
    [15]
    刘顺飞, 朱迪, 董晓龙. 星载多普勒雷达云中大气风场测量仿真研究[J]. 遥感技术与应用, 2023, 38(4): 903-912

    LIU Shunfei, ZHU Di, DONG Xiaolong. Study and simulation on measurement of atmospheric wind field in cloud by spaceborne Doppler radar[J]. Remote Sensing Technology and Application, 2023, 38(4): 903-912
    [16]
    ZHANG J Y, DONG X L, ZHU D. Analysis of Doppler spectrum of a spaceborne Doppler scatterometer using an echoed signal simulation model[J]. International Journal of Remote Sensing, 2023, 44(16): 4883-4910 doi: 10.1080/01431161.2023.2240510
    [17]
    FUKAO S, HAMAZU K. Radar measurements and scatterer parameters[M]//FUKAO S, HAMAZU K. Radar for Meteorological and Atmospheric Observations. Tokyo: Springer, 2014
    [18]
    张培昌, 杜秉玉, 戴铁丕. 雷达气象学[M]. 2版. 北京: 气象出版社, 2001
    [19]
    RAY P S. Broadband complex refractive in dices of ice and water[J]. Applied Optics, 1972, 11(8): 1836-1844 doi: 10.1364/AO.11.001836
    [20]
    WARREN S G, BRANDT R E. Optical constants of ice from the ultraviolet to the microwave: a revised compilation[J]. Journal of Geophysical Research: Atmospheres, 2008, 113(D14): D14220
    [21]
    MÄTZLER C. Thermal Microwave Radiation: Applications for Remote Sensing[M]. London: The Institution of Engineering and Technology, 2006
    [22]
    BRINGI V N, CHANDRASEKAR V. Polarimetric Doppler Weather Radar: Principles and Applications[M]. Cambridge: Cambridge University Press, 2001
    [23]
    HEYMSFIELD A J, SCHMITT C, BANSEMER A. Ice cloud particle size distributions and pressure-dependent terminal velocities from in situ observations at temperatures from 0° to −86°C[J]. Journal of the Atmospheric Sciences, 2013, 70(12): 4123-4154 doi: 10.1175/JAS-D-12-0124.1
    [24]
    MILES N L, VERLINDE J, CLOTHIAUX E E. Cloud droplet size distributions in low-level stratiform clouds[J]. Journal of the Atmospheric Sciences, 2000, 57(2): 295-311 doi: 10.1175/1520-0469(2000)057<0295:CDSDIL>2.0.CO;2
    [25]
    YIN J F, WANG D H, ZHAI G Q. Long-term in situ measurements of the cloud-precipitation microphysical properties over East Asia[J]. Atmospheric Research, 2011, 102(1/2): 206-217
    [26]
    林正健. 星载毫米波雷达正演仿真研究及敏感性分析[D]. 南京: 南京信息工程大学, 2023
    [27]
    LEINONEN J. High-level interface to T-matrix scattering calculations: architecture, capabilities and limitations[J]. Optics Express, 2014, 22(2): 1655-1660 doi: 10.1364/OE.22.001655
    [28]
    LIEBE H J. An updated model for millimeter wave propagation in moist air[J]. Radio Science, 1985, 20(5): 1069-1089 doi: 10.1029/RS020i005p01069
    [29]
    张培昌, 王振会. 大气微波遥感基础[M]. 北京: 气象出版社, 1995
    [30]
    任郑江, 吴迪, 高铭阳, 等. 基于三维STAP算法的机载气象雷达地杂波抑制[J]. 现代雷达, 2021, 43(2): 11-19

    REN Zhengjiang, WU Di, GAO Mingyang, et al. Three-dimensional space-time adaptive processing algorithm of ground clutter suppression for airborne weather radar[J]. Modern Radar, 2021, 43(2): 11-19
    [31]
    明文华. 星载降水测量雷达杂波计算与分析[J]. 雷达科学与技术, 2009, 7(3): 189-193,204 doi: 10.3969/j.issn.1672-2337.2009.03.006

    MING Wenhua. Clutter computation and analysis of space-borne precipitation radar[J]. Radar Science and Technology, 2009, 7(3): 189-193,204 doi: 10.3969/j.issn.1672-2337.2009.03.006
    [32]
    WANG Y X, WEI M, WANG Z H, et al. Novel scanning strategy for future spaceborne Doppler weather radar with application to tropical cyclones[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10(6): 2685-2693 doi: 10.1109/JSTARS.2017.2672826
    [33]
    BATTAGLIA A, DHILLON R, ILLINGWORTH A. Doppler W-band polarization diversity space-borne radar simulator for wind studies[J]. Atmospheric Measurement Techniques, 2018, 11(11): 5965-5979 doi: 10.5194/amt-11-5965-2018
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(1)

    Article Metrics

    Article Views(356) PDF Downloads(29) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return