| Citation: | FENG Yuxuan, HE Jieying, MA Gang. Analysis of the Effect of the Fengyun-3D Satellite Microwave Humidity Sounder (MWHS-II) Data Assimilation on Typhoon “YAGI” Forecast (in Chinese). Chinese Journal of Space Science, 2025, 45(2): 364-382 doi: 10.11728/cjss2025.02.2024-0201 |
| [1] |
ZHANG P, HU X Q, LU Q F, et al. FY-3E: the first operational meteorological satellite mission in an early morning orbit[J]. Advances in Atmospheric Sciences, 2022, 39(1): 1-8 doi: 10.1007/s00376-021-1304-7
|
| [2] |
HE J Y, GUO Y, XIE X X, et al. Updates of microwave humidity sounder from FengYun-3A to 3F satellites[J]. IEEE Geoscience and Remote Sensing Letters, 2024, 21: 4501405 doi: 10.1109/LGRS.2024.3432068
|
| [3] |
张升伟, 李靖. “风云三号”卫星微波湿度计[J]. 高科技与产业化, 2013, 19(11): 79-80
ZHANG Shengwei, LI Jing. “FY-3” satellite MWHS[J]. High-Technology :Times New Roman;">& Commercialization, 2013, 19(11): 79-80
|
| [4] |
(何杰颖, 张升伟, 王振占, 等. 风云气象卫星微波大气探测回顾与展望[J]. 空间科学学报, 2023, 43(6): 1025-1035 doi: 10.11728/cjss2023.06.yg16
HE Jieying, ZHANG Shengwei, WANG Zhenzhan, et al. Prospects for microwave atmospheric sounding of the new generation of Fengyun meteorological satellites[J]. Chinese Journal of Space Science, 2023, 43(6): 1025-1035 doi: 10.11728/cjss2023.06.yg16
|
| [5] |
DUNCAN D I, BORMANN N. On the Addition of Microwave Sounders and NWP Skill, Including Assessment of FY-3D Sounders[R]. Reading: European Centre for Medium-Range Weather Forecasts, 2020
|
| [6] |
CARMINATI F, MIGLIORINI S. All-sky data assimilation of MWTS-2 and MWHS-2 in the Met Office global NWP system[J]. Advances in Atmospheric Sciences, 2021, 38(10): 1682-1694 doi: 10.1007/s00376-021-1071-5
|
| [7] |
CARMINATI F, ATKINSON N, CANDY B, et al. Insights into the microwave instruments onboard the Fengyun 3D Satellite: data quality and assimilation in the met office NWP system[J]. Advances in Atmospheric Sciences, 2021, 38(8): 1379-1396 doi: 10.1007/s00376-020-0010-1
|
| [8] |
BORMANN N, DUNCAN D, ENGLISH S, et al. Growing operational use of FY-3 data in the ECMWF system[J]. Advances in Atmospheric Sciences, 2021, 38(8): 1285-1298 doi: 10.1007/s00376-020-0207-3
|
| [9] |
YANG Y M, DU M B, ZHANG J. FY-3A satellite microwave data assimilation experiments in tropical cyclone forecast[J]. Journal of Tropical Meteorology, 2013, 19(3): 297-304
|
| [10] |
XU D M, MIN J Z, SHEN F F, et al. Assimilation of MWHS radiance data from the FY-3B satellite with the WRF Hybrid-3DVAR system for the forecasting of binary typhoons[J]. Journal of Advances in Modeling Earth Systems, 2016, 8(2): 1014-1028 doi: 10.1002/2016MS000674
|
| [11] |
CHEN K Y, CHEN Z X, XIAN Z P, et al. Impacts of the all-sky assimilation of FY-3C and FY-3D MWHS-2 radiances on analyses and forecasts of typhoon Hagupit[J]. Remote Sensing, 2023, 15(9): 2279 doi: 10.3390/rs15092279
|
| [12] |
XU D M, SHU A Q, LI H, et al. Effects of assimilating clear-sky FY-3D MWHS2 radiance on the numerical simulation of tropical storm ampil[J]. Remote Sensing, 2021, 13(15): 2873 doi: 10.3390/rs13152873
|
| [13] |
XIAN Z P, CHEN K Y, ZHU J. All-sky assimilation of the MWHS-2 observations and evaluation the impacts on the analyses and forecasts of binary typhoons[J]. Journal of Geophysical Research: Atmospheres, 2019, 124(12): 6359-6378 doi: 10.1029/2018JD029658
|
| [14] |
HUANG L Z, XU D M, LI H, et al. Assimilating FY-3D MWHS2 radiance data to predict typhoon Muifa based on different initial background conditions and fast radiative transfer models[J]. Remote Sensing, 2023, 15(13): 3220 doi: 10.3390/rs15133220
|
| [15] |
XIAO H Y, HAN W, ZHANG P, et al. Assimilation of data from the MWHS-II onboard the first early morning satellite FY-3E into the CMA global 4D-Var system[J]. Meteorological Applications, 2023, 30(3): e2133 doi: 10.1002/met.2133
|
| [16] |
SHEN F F, YUAN X L, LI H, et al. Improving Typhoon Muifa (2022) forecasts with FY-3D and FY-3E MWHS-2 satellite data assimilation under clear sky conditions[J]. Remote Sensing, 2024, 16(14): 2614 doi: 10.3390/rs16142614
|
| [17] |
李娜, 张升伟, 何杰颖. 基于FY-3C MWHTS的台风降水反演算法研究[J]. 遥感技术与应用, 2019, 34(5): 1091-1100
LI Na, ZHAGN Shengwei, HE Jieying. Research on typhoon precipitation retrieval algorithm based on FY-3C MWHTS[J]. Remote Sensing Technology and Application, 2019, 34(5): 1091-1100
|
| [18] |
JU Y L, HE J Y, MA G, et al. Impact of the detection channels added by Fengyun Satellite MWHS-II at 183 GHz on global numerical weather prediction[J]. Remote Sensing, 2023, 15(17): 4279 doi: 10.3390/rs15174279
|
| [19] |
LIU K W, HE J Y, CHEN H N. Precipitation retrieval from Fengyun-3D microwave humidity and temperature sounder data using machine learning[J]. Remote Sensing, 2022, 14(4): 848 doi: 10.3390/rs14040848
|
| [20] |
秦璐瑶. 云环境下风云三号卫星微波资料同化及对数值预报影响的研究[D]. 南京: 南京信息工程大学, 2023
QIN Luyao. Study on Microwave Data Assimilation of FY-3 Satellite in Cloud Environment and Its Influence on Numerical Prediction[D]. Nanjing: Nanjing University of Information Science & Technology, 2023
|
| [21] |
MATRICARDI M, CHEVALLIER F, KELLY G, et al. An improved general fast radiative transfer model for the assimilation of radiance observations[J]. Quarterly Journal of the Royal Meteorological Society, 2004, 130(596): 153-173 doi: 10.1256/qj.02.181
|
| [22] |
ZOU X L. Atmospheric Satellite Observations: Variation Assimilation and Quality Assurance[M]. Beijing: Science Press, 2023
|
| [23] |
BONAVITA M, ISAKSEN L, HÓLM E. On the use of EDA background error variances in the ECMWF 4D-Var[J]. Quarterly Journal of the Royal Meteorological Society, 2012, 138(667): 1540-1559 doi: 10.1002/qj.1899
|
| [24] |
ZHANG P, LU Q F, HU X Q, et al. Latest progress of the Chinese meteorological satellite program and core data processing technologies[J]. Advances in Atmospheric Sciences, 2019, 36(9): 1027-1045 doi: 10.1007/s00376-019-8215-x
|
| [25] |
(朱国富. 数值天气预报中分析同化基本方法的历史发展脉络和评述[J]. 气象, 2015, 41(8): 986-996 doi: 10.7519/j.issn.1000-0526.2015.08.008
ZHU Guofu. Remarks on development of basic methods of atmospheric data assimilation for numerical weather prediction[J]. Meteorological Monthly, 2015, 41(8): 986-996 doi: 10.7519/j.issn.1000-0526.2015.08.008
|
| [26] |
杨寅, 韩威, 董佩明. AMSU微波探测资料同化的质量控制方法概述[J]. 气象, 2011, 37(11): 1395-1401 doi: 10.7519/j.issn.1000-0526.2011.11.010
Yang Yin, Han Wei, DONG Peiming. Overview on the Quality Control in Assimilation of AMSU Microwave Sounding Data[J]. Meteorological Monthly, 2011, 37(11): 1395-1401 doi: 10.7519/j.issn.1000-0526.2011.11.010
|
| [27] |
WENG F Z, GRODY N C, FERRARO R, et al. Cloud liquid water climatology from the special sensor microwave/imager[J]. Journal of Climate, 1997, 10(5): 1086-1098 doi: 10.1175/1520-0442(1997)010<1086:CLWCFT>2.0.CO;2
|
| [28] |
LIN B, MINNIS P, FAN A. Cloud liquid water path variations with temperature observed during the Surface Heat Budget of the Arctic Ocean (SHEBA) experiment[J]. Journal of Geophysical Research: Atmospheres, 2003, 108(D14): 4427 doi: 10.1029/2002JD002851
|
| [29] |
WENG F Z, ZHAO L M, FERRARO R R, et al. Advanced microwave sounding unit cloud and precipitation algorithms[J]. Radio Science, 2003, 38(4): 8068
|
| [30] |
钱小立. 基于微波温度计的温度日变化特征及云水路径气候变化趋势研究[D]. 南京: 南京信息工程大学, 2022: 26-28
QIAN Xiaoli. Characteristics of Daily Temperature Variation and Trend of c Cloud Liquid Water Path Climate Change Based on Microwave Thermometer[D]. Nanjing: Nanjing University of Information Science and Technology, 2022: 26-28
|
| [31] |
AULIGNÉ T, MCNALLY A P, DEE D P. Adaptive bias correction for satellite data in a numerical weather prediction system[J]. Quarterly Journal of the Royal Meteorological Society, 2007, 133(624): 631-642 doi: 10.1002/qj.56
|
| [32] |
台风摩羯-百科[EB/OL]. (2024-09-11)[2024-12-03]. https://baike.weixin.qq.com/v220167141.htm?scene_id=134&sid=10351723090268142305&ch=s1s
Severe Typhoon Yagi[EB/OL]. (2024-09-11)[2024-12-03]. https://baike.weixin.qq.com/v220167141.htm?scene_id=134&sid=10351723090268142305&ch=s1s
|
| [33] |
HONG S Y, LIM J, OCK J. The WRF single-moment 6-class microphysics scheme (WSM6)[J]. Asia-Pacific Journal of Atmospheric Sciences, 2006, 42(2): 129-151
|
| [34] |
DUDHIA J. Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model[J]. Journal of the Atmospheric Sciences, 1989, 46(20): 3077-3107 doi: 10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2
|
| [35] |
MLAWER E J, TAUBMAN S J, BROWN P D, et al. Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave[J]. Journal of Geophysical Research: Atmospheres, 1997, 102(D14): 16663-16682 doi: 10.1029/97JD00237
|
| [36] |
HONG S Y, NOH Y, DUDHIA J. A new vertical diffusion package with an explicit treatment of entrainment processes[J]. Monthly Weather Review, 2006, 134(9): 2318-2341 doi: 10.1175/MWR3199.1
|
| [37] |
KAIN J S. The Kain–fritsch convective parameterization: an update[J]. Journal of Applied Meteorology and Climatology, 2004, 43(1): 170-181 doi: 10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2
|
| [38] |
COURTIER P, THÉPAUT J N, HOLLINGSWORTH A. A strategy for operational implementation of 4D-Var, using an incremental approach[J]. Quarterly Journal of the Royal Meteorological Society, 1994, 120(519): 1367-1387
|
| [39] |
DERBER J, BOUTTIER F. A reformulation of the background error covariance in the ECMWF global data assimilation system[J]. Tellus A: Dynamic Meteorology and Oceanography, 1999, 51(2): 195-221 doi: 10.3402/tellusa.v51i2.12316
|
| [40] |
SUN J Z, WANG H L, TONG W X, et al. Comparison of the impacts of momentum control variables on high-resolution variational data assimilation and precipitation forecasting[J]. Monthly Weather Review, 2016, 144(1): 149-169 doi: 10.1175/MWR-D-14-00205.1
|
| [41] |
PARRISH D F, DERBER J C. The national meteorological center’s spectral statistical-interpolation analysis system[J]. Monthly Weather Review, 1992, 120(8): 1747-1763 doi: 10.1175/1520-0493(1992)120<1747:TNMCSS>2.0.CO;2
|
| [42] |
ERSBACH H, BELL B, BERRISFORD P, et al. The ERA5 global reanalysis[J]. Quarterly Journal of the Royal Meteorological Society, 2020, 146(730): 1999-2049 doi: 10.1002/qj.3803
|
| [43] |
QIN L Y, CHEN Y D, MA G, et al. Assimilation of FY-3D MWTS-II radiance with 3D precipitation detection and the impacts on typhoon forecasts[J]. Advances in Atmospheric Sciences, 2023, 40(5): 900-919 doi: 10.1007/s00376-022-1252-x
|
| [44] |
LI J, LIU G Q. Direct assimilation of Chinese FY-3C Microwave Temperature Sounder-2 radiances in the global GRAPES system[J]. Atmospheric Measurement Techniques, 2016, 9(7): 3095-3113 doi: 10.5194/amt-9-3095-2016
|
| [45] |
HUFFMAN G J, STOCKER E F, BOLVIN D T, et al. GPM IMERG Final Precipitation L3 Day 0.1 Degree x 0.1 DegreeV06[R]. Greenbelt: Goddard Earth Sciences Data and Information Services Center (GES DISC), 2019
|
| [46] |
ROBERTS N M, LEAN H W. Scale-selective verification of rainfall accumulations from high-resolution forecasts of convective events[J]. Monthly Weather Review, 2008, 136(1): 78-97 doi: 10.1175/2007MWR2123.1
|