Volume 45 Issue 2
Apr.  2025
Turn off MathJax
Article Contents
FENG Yuxuan, HE Jieying, MA Gang. Analysis of the Effect of the Fengyun-3D Satellite Microwave Humidity Sounder (MWHS-II) Data Assimilation on Typhoon “YAGI” Forecast (in Chinese). Chinese Journal of Space Science, 2025, 45(2): 364-382 doi: 10.11728/cjss2025.02.2024-0201
Citation: FENG Yuxuan, HE Jieying, MA Gang. Analysis of the Effect of the Fengyun-3D Satellite Microwave Humidity Sounder (MWHS-II) Data Assimilation on Typhoon “YAGI” Forecast (in Chinese). Chinese Journal of Space Science, 2025, 45(2): 364-382 doi: 10.11728/cjss2025.02.2024-0201

Analysis of the Effect of the Fengyun-3D Satellite Microwave Humidity Sounder (MWHS-II) Data Assimilation on Typhoon “YAGI” Forecast

doi: 10.11728/cjss2025.02.2024-0201 cstr: 32142.14.cjss.2024-0201
  • Received Date: 2024-12-31
  • Accepted Date: 2025-04-10
  • Rev Recd Date: 2025-03-10
  • Available Online: 2025-04-18
  • The Fengyun-3D satellite (FY-3D) Microwave Humidity Sounder (MWHS-II) successfully monitored the Typhoon “YAGI” (2411). In this paper, a three-dimensional variational assimilation framework of FY-3D MWHS-II data in clear sky is constructed in WRFDA. By setting up a single-band and dual-band joint assimilation and prediction experiment scheme of 118 GHz and 183 GHz, the microwave data assimilation and the forecast effect on the intensity, path and precipitation of Typhoon “YAGI” are systematically evaluated. The experiment shows that the assimilation of FY-3D MWHS-II data effectively improves the quality of the analysis field, and also has a positive impact on the forecast of typhoon intensity, track and precipitation. For the typhoon forecast, the assimilation of 118 GHz and 183 GHz channels improved the typhoon path forecast by 17.18% and 13.39% respectively, and the assimilation of 183 GHz in the ocean area made the path forecast improve by 14.59%. For the precipitation forecast, the assimilation of MWHS-II data significantly improves the hit rate of medium and small rainfall levels (< 25 mm) in the initial 24 hours, among which the 118GHz channel has a unique advantage in forecasting heavy rainfall (> 50 mm); The improvement effect of 183 GHz channel gradually appeared after 24 hours, while the dual-band joint scheme showed comprehensive advantages, and the FSS score of precipitation in each magnitude was significantly improved compared with the control experiment. The differential improvement effect of FY-3D MWHS-II’s 118 GHz and 183 GHz frequency bands on different forecast elements highlights the unique application value and potential of FY-3 MWHS-II data in regional typhoon numerical forecast.

     

  • loading
  • [1]
    ZHANG P, HU X Q, LU Q F, et al. FY-3E: the first operational meteorological satellite mission in an early morning orbit[J]. Advances in Atmospheric Sciences, 2022, 39(1): 1-8 doi: 10.1007/s00376-021-1304-7
    [2]
    HE J Y, GUO Y, XIE X X, et al. Updates of microwave humidity sounder from FengYun-3A to 3F satellites[J]. IEEE Geoscience and Remote Sensing Letters, 2024, 21: 4501405 doi: 10.1109/LGRS.2024.3432068
    [3]
    张升伟, 李靖. “风云三号”卫星微波湿度计[J]. 高科技与产业化, 2013, 19(11): 79-80

    ZHANG Shengwei, LI Jing. “FY-3” satellite MWHS[J]. High-Technology :Times New Roman;">& Commercialization, 2013, 19(11): 79-80
    [4]
    (何杰颖, 张升伟, 王振占, 等. 风云气象卫星微波大气探测回顾与展望[J]. 空间科学学报, 2023, 43(6): 1025-1035 doi: 10.11728/cjss2023.06.yg16

    HE Jieying, ZHANG Shengwei, WANG Zhenzhan, et al. Prospects for microwave atmospheric sounding of the new generation of Fengyun meteorological satellites[J]. Chinese Journal of Space Science, 2023, 43(6): 1025-1035 doi: 10.11728/cjss2023.06.yg16
    [5]
    DUNCAN D I, BORMANN N. On the Addition of Microwave Sounders and NWP Skill, Including Assessment of FY-3D Sounders[R]. Reading: European Centre for Medium-Range Weather Forecasts, 2020
    [6]
    CARMINATI F, MIGLIORINI S. All-sky data assimilation of MWTS-2 and MWHS-2 in the Met Office global NWP system[J]. Advances in Atmospheric Sciences, 2021, 38(10): 1682-1694 doi: 10.1007/s00376-021-1071-5
    [7]
    CARMINATI F, ATKINSON N, CANDY B, et al. Insights into the microwave instruments onboard the Fengyun 3D Satellite: data quality and assimilation in the met office NWP system[J]. Advances in Atmospheric Sciences, 2021, 38(8): 1379-1396 doi: 10.1007/s00376-020-0010-1
    [8]
    BORMANN N, DUNCAN D, ENGLISH S, et al. Growing operational use of FY-3 data in the ECMWF system[J]. Advances in Atmospheric Sciences, 2021, 38(8): 1285-1298 doi: 10.1007/s00376-020-0207-3
    [9]
    YANG Y M, DU M B, ZHANG J. FY-3A satellite microwave data assimilation experiments in tropical cyclone forecast[J]. Journal of Tropical Meteorology, 2013, 19(3): 297-304
    [10]
    XU D M, MIN J Z, SHEN F F, et al. Assimilation of MWHS radiance data from the FY-3B satellite with the WRF Hybrid-3DVAR system for the forecasting of binary typhoons[J]. Journal of Advances in Modeling Earth Systems, 2016, 8(2): 1014-1028 doi: 10.1002/2016MS000674
    [11]
    CHEN K Y, CHEN Z X, XIAN Z P, et al. Impacts of the all-sky assimilation of FY-3C and FY-3D MWHS-2 radiances on analyses and forecasts of typhoon Hagupit[J]. Remote Sensing, 2023, 15(9): 2279 doi: 10.3390/rs15092279
    [12]
    XU D M, SHU A Q, LI H, et al. Effects of assimilating clear-sky FY-3D MWHS2 radiance on the numerical simulation of tropical storm ampil[J]. Remote Sensing, 2021, 13(15): 2873 doi: 10.3390/rs13152873
    [13]
    XIAN Z P, CHEN K Y, ZHU J. All-sky assimilation of the MWHS-2 observations and evaluation the impacts on the analyses and forecasts of binary typhoons[J]. Journal of Geophysical Research: Atmospheres, 2019, 124(12): 6359-6378 doi: 10.1029/2018JD029658
    [14]
    HUANG L Z, XU D M, LI H, et al. Assimilating FY-3D MWHS2 radiance data to predict typhoon Muifa based on different initial background conditions and fast radiative transfer models[J]. Remote Sensing, 2023, 15(13): 3220 doi: 10.3390/rs15133220
    [15]
    XIAO H Y, HAN W, ZHANG P, et al. Assimilation of data from the MWHS-II onboard the first early morning satellite FY-3E into the CMA global 4D-Var system[J]. Meteorological Applications, 2023, 30(3): e2133 doi: 10.1002/met.2133
    [16]
    SHEN F F, YUAN X L, LI H, et al. Improving Typhoon Muifa (2022) forecasts with FY-3D and FY-3E MWHS-2 satellite data assimilation under clear sky conditions[J]. Remote Sensing, 2024, 16(14): 2614 doi: 10.3390/rs16142614
    [17]
    李娜, 张升伟, 何杰颖. 基于FY-3C MWHTS的台风降水反演算法研究[J]. 遥感技术与应用, 2019, 34(5): 1091-1100

    LI Na, ZHAGN Shengwei, HE Jieying. Research on typhoon precipitation retrieval algorithm based on FY-3C MWHTS[J]. Remote Sensing Technology and Application, 2019, 34(5): 1091-1100
    [18]
    JU Y L, HE J Y, MA G, et al. Impact of the detection channels added by Fengyun Satellite MWHS-II at 183 GHz on global numerical weather prediction[J]. Remote Sensing, 2023, 15(17): 4279 doi: 10.3390/rs15174279
    [19]
    LIU K W, HE J Y, CHEN H N. Precipitation retrieval from Fengyun-3D microwave humidity and temperature sounder data using machine learning[J]. Remote Sensing, 2022, 14(4): 848 doi: 10.3390/rs14040848
    [20]
    秦璐瑶. 云环境下风云三号卫星微波资料同化及对数值预报影响的研究[D]. 南京: 南京信息工程大学, 2023

    QIN Luyao. Study on Microwave Data Assimilation of FY-3 Satellite in Cloud Environment and Its Influence on Numerical Prediction[D]. Nanjing: Nanjing University of Information Science & Technology, 2023
    [21]
    MATRICARDI M, CHEVALLIER F, KELLY G, et al. An improved general fast radiative transfer model for the assimilation of radiance observations[J]. Quarterly Journal of the Royal Meteorological Society, 2004, 130(596): 153-173 doi: 10.1256/qj.02.181
    [22]
    ZOU X L. Atmospheric Satellite Observations: Variation Assimilation and Quality Assurance[M]. Beijing: Science Press, 2023
    [23]
    BONAVITA M, ISAKSEN L, HÓLM E. On the use of EDA background error variances in the ECMWF 4D-Var[J]. Quarterly Journal of the Royal Meteorological Society, 2012, 138(667): 1540-1559 doi: 10.1002/qj.1899
    [24]
    ZHANG P, LU Q F, HU X Q, et al. Latest progress of the Chinese meteorological satellite program and core data processing technologies[J]. Advances in Atmospheric Sciences, 2019, 36(9): 1027-1045 doi: 10.1007/s00376-019-8215-x
    [25]
    (朱国富. 数值天气预报中分析同化基本方法的历史发展脉络和评述[J]. 气象, 2015, 41(8): 986-996 doi: 10.7519/j.issn.1000-0526.2015.08.008

    ZHU Guofu. Remarks on development of basic methods of atmospheric data assimilation for numerical weather prediction[J]. Meteorological Monthly, 2015, 41(8): 986-996 doi: 10.7519/j.issn.1000-0526.2015.08.008
    [26]
    杨寅, 韩威, 董佩明. AMSU微波探测资料同化的质量控制方法概述[J]. 气象, 2011, 37(11): 1395-1401 doi: 10.7519/j.issn.1000-0526.2011.11.010

    Yang Yin, Han Wei, DONG Peiming. Overview on the Quality Control in Assimilation of AMSU Microwave Sounding Data[J]. Meteorological Monthly, 2011, 37(11): 1395-1401 doi: 10.7519/j.issn.1000-0526.2011.11.010
    [27]
    WENG F Z, GRODY N C, FERRARO R, et al. Cloud liquid water climatology from the special sensor microwave/imager[J]. Journal of Climate, 1997, 10(5): 1086-1098 doi: 10.1175/1520-0442(1997)010<1086:CLWCFT>2.0.CO;2
    [28]
    LIN B, MINNIS P, FAN A. Cloud liquid water path variations with temperature observed during the Surface Heat Budget of the Arctic Ocean (SHEBA) experiment[J]. Journal of Geophysical Research: Atmospheres, 2003, 108(D14): 4427 doi: 10.1029/2002JD002851
    [29]
    WENG F Z, ZHAO L M, FERRARO R R, et al. Advanced microwave sounding unit cloud and precipitation algorithms[J]. Radio Science, 2003, 38(4): 8068
    [30]
    钱小立. 基于微波温度计的温度日变化特征及云水路径气候变化趋势研究[D]. 南京: 南京信息工程大学, 2022: 26-28

    QIAN Xiaoli. Characteristics of Daily Temperature Variation and Trend of c Cloud Liquid Water Path Climate Change Based on Microwave Thermometer[D]. Nanjing: Nanjing University of Information Science and Technology, 2022: 26-28
    [31]
    AULIGNÉ T, MCNALLY A P, DEE D P. Adaptive bias correction for satellite data in a numerical weather prediction system[J]. Quarterly Journal of the Royal Meteorological Society, 2007, 133(624): 631-642 doi: 10.1002/qj.56
    [32]
    台风摩羯-百科[EB/OL]. (2024-09-11)[2024-12-03]. https://baike.weixin.qq.com/v220167141.htm?scene_id=134&sid=10351723090268142305&ch=s1s

    Severe Typhoon Yagi[EB/OL]. (2024-09-11)[2024-12-03]. https://baike.weixin.qq.com/v220167141.htm?scene_id=134&sid=10351723090268142305&ch=s1s
    [33]
    HONG S Y, LIM J, OCK J. The WRF single-moment 6-class microphysics scheme (WSM6)[J]. Asia-Pacific Journal of Atmospheric Sciences, 2006, 42(2): 129-151
    [34]
    DUDHIA J. Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model[J]. Journal of the Atmospheric Sciences, 1989, 46(20): 3077-3107 doi: 10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2
    [35]
    MLAWER E J, TAUBMAN S J, BROWN P D, et al. Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave[J]. Journal of Geophysical Research: Atmospheres, 1997, 102(D14): 16663-16682 doi: 10.1029/97JD00237
    [36]
    HONG S Y, NOH Y, DUDHIA J. A new vertical diffusion package with an explicit treatment of entrainment processes[J]. Monthly Weather Review, 2006, 134(9): 2318-2341 doi: 10.1175/MWR3199.1
    [37]
    KAIN J S. The Kain–fritsch convective parameterization: an update[J]. Journal of Applied Meteorology and Climatology, 2004, 43(1): 170-181 doi: 10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2
    [38]
    COURTIER P, THÉPAUT J N, HOLLINGSWORTH A. A strategy for operational implementation of 4D-Var, using an incremental approach[J]. Quarterly Journal of the Royal Meteorological Society, 1994, 120(519): 1367-1387
    [39]
    DERBER J, BOUTTIER F. A reformulation of the background error covariance in the ECMWF global data assimilation system[J]. Tellus A: Dynamic Meteorology and Oceanography, 1999, 51(2): 195-221 doi: 10.3402/tellusa.v51i2.12316
    [40]
    SUN J Z, WANG H L, TONG W X, et al. Comparison of the impacts of momentum control variables on high-resolution variational data assimilation and precipitation forecasting[J]. Monthly Weather Review, 2016, 144(1): 149-169 doi: 10.1175/MWR-D-14-00205.1
    [41]
    PARRISH D F, DERBER J C. The national meteorological center’s spectral statistical-interpolation analysis system[J]. Monthly Weather Review, 1992, 120(8): 1747-1763 doi: 10.1175/1520-0493(1992)120<1747:TNMCSS>2.0.CO;2
    [42]
    ERSBACH H, BELL B, BERRISFORD P, et al. The ERA5 global reanalysis[J]. Quarterly Journal of the Royal Meteorological Society, 2020, 146(730): 1999-2049 doi: 10.1002/qj.3803
    [43]
    QIN L Y, CHEN Y D, MA G, et al. Assimilation of FY-3D MWTS-II radiance with 3D precipitation detection and the impacts on typhoon forecasts[J]. Advances in Atmospheric Sciences, 2023, 40(5): 900-919 doi: 10.1007/s00376-022-1252-x
    [44]
    LI J, LIU G Q. Direct assimilation of Chinese FY-3C Microwave Temperature Sounder-2 radiances in the global GRAPES system[J]. Atmospheric Measurement Techniques, 2016, 9(7): 3095-3113 doi: 10.5194/amt-9-3095-2016
    [45]
    HUFFMAN G J, STOCKER E F, BOLVIN D T, et al. GPM IMERG Final Precipitation L3 Day 0.1 Degree x 0.1 DegreeV06[R]. Greenbelt: Goddard Earth Sciences Data and Information Services Center (GES DISC), 2019
    [46]
    ROBERTS N M, LEAN H W. Scale-selective verification of rainfall accumulations from high-resolution forecasts of convective events[J]. Monthly Weather Review, 2008, 136(1): 78-97 doi: 10.1175/2007MWR2123.1
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(3)

    Article Metrics

    Article Views(408) PDF Downloads(24) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return